Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Evaluation and Characterization of Modified K114 Method to Localize Plaques in Rodent and Plaques and Tangles in Human Brain Tissue

Author(s): Sanjana Padala, Sharay Setti, James Raymick, Joseph Hanig and Sumit Sarkar*

Volume 21, Issue 1, 2024

Published on: 01 April, 2024

Page: [69 - 80] Pages: 12

DOI: 10.2174/0115672050295561240327055835

Abstract

Background: A plethora of studies has shown the utility of several chemical dyes due to their affinity to bind Aβ to enable visualization of plaques under light or fluorescence microscope, and some of them showed affinity to bind neurofibrillary tangles (NFT) as well. However, only a few of them have the propensity to bind both senile plaques (SP) and NFT simultaneously.

Objective: In our current study, we aimed to modify the K114 dye and the staining procedure to substantially improve the staining of amyloid plaques in both human and rodent brains and neurofibrillary tangles in the human brain.

Methods: We modified the K114 solution and the staining procedure using Sudan Black as a modifier. Additionally, to evaluate the target of the modified K114, we performed double labeling of K114 and increased Aβ against three different epitopes. We used 5 different antibodies to detect phosphorylated tau to understand the specific targets that modified K114 binds.

Results: Dual labeling using hyperphosphorylated antibodies against AT8, pTau, and TNT1 revealed that more than 80% hyperphosphorylated tau colocalized with tangles that were positive for modified K114, whereas more than 70% of the hyperphosphorylated tau colocalized with modified K114. On the other hand, more than 80% of the plaques that were stained with Aβ MOAB-2 were colocalized with modified K114.

Conclusion: Our modified method can label amyloid plaques within 5 min in the rat brain and within 20 min in the human brain. Our results indicated that modified K114 could be used as a valuable tool for detecting amyloid plaques and tangles with high contrast and resolution relative to other conventional fluorescence markers.

Keywords: Amyloid beta, plaques, neurofibrillary tangles, histochemical tracer, styrylbenzene, Alzheimer’s disease, phosphorylated tau.

[1]
2023 Alzheimer’s disease facts and figures. Alzheimers Dement., 2023, 19(4), 1598-1695.
[http://dx.doi.org/10.1002/alz.13016] [PMID: 36918389]
[2]
Hardy, J.; Allsop, D. Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol. Sci., 1991, 12(10), 383-388.
[http://dx.doi.org/10.1016/0165-6147(91)90609-V] [PMID: 1763432]
[3]
Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 2002, 297(5580), 353-356.
[http://dx.doi.org/10.1126/science.1072994] [PMID: 12130773]
[4]
Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science, 1992, 256(5054), 184-185.
[http://dx.doi.org/10.1126/science.1566067] [PMID: 1566067]
[5]
Alonso, A.C.; Grundke-Iqbal, I.; Barra, H.S.; Iqbal, K. Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: Sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc. Natl. Acad. Sci. USA, 1997, 94(1), 298-303.
[http://dx.doi.org/10.1073/pnas.94.1.298] [PMID: 8990203]
[6]
Alonso, A.C.; Grundke-Iqbal, I.; Iqbal, K. Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat. Med., 1996, 2(7), 783-787.
[http://dx.doi.org/10.1038/nm0796-783] [PMID: 8673924]
[7]
Alonso, A.; Li, B.; Grundke-Iqbal, I.; Iqbal, K. Mechanism of tau-induced neurodegeneration in Alzheimer disease and related tauopathies. Curr. Alzheimer Res., 2008, 5(4), 375-384.
[http://dx.doi.org/10.2174/156720508785132307] [PMID: 18690834]
[8]
Iqbal, K.; Alonso, A.C.; Grundke-Iqbal, I. Cytosolic abnormally hyperphosphorylated tau but not paired helical filaments sequester normal MAPs and inhibit microtubule assembly. J. Alzheimers Dis., 2008, 14(4), 365-370.
[http://dx.doi.org/10.3233/JAD-2008-14402] [PMID: 18688085]
[9]
Aghourian, M.; Aumont, É.; Grothe, M.J.; Soucy, J.P.; Rosa-Neto, P.; Bedard, M.A. FEOBV-PET to quantify cortical cholinergic denervation in AD: Relationship to basal forebrain volumetry. J. Neuroimaging, 2021, 31(6), 1077-1081.
[http://dx.doi.org/10.1111/jon.12921] [PMID: 34462992]
[10]
Aghourian, M.; Legault-Denis, C.; Soucy, J-P.; Rosa-Neto, P.; Gauthier, S.; Kostikov, A.; Gravel, P.; Bédard, M-A. Quantification of brain cholinergic denervation in Alzheimer’s disease using PET imaging with [18F]-FEOBV. Mol. Psychiatry, 2017, 22(11), 1531-1538.
[http://dx.doi.org/10.1038/mp.2017.183] [PMID: 28894304]
[11]
Bedard, M.A.; Aghourian, M.; Legault-Denis, C.; Postuma, R.B.; Soucy, J.P.; Gagnon, J.F.; Pelletier, A.; Montplaisir, J. Brain cholinergic alterations in idiopathic REM sleep behaviour disorder: A PET imaging study with 18F-FEOBV. Sleep Med., 2019, 58, 35-41.
[http://dx.doi.org/10.1016/j.sleep.2018.12.020] [PMID: 31078078]
[12]
Nejad-Davarani, S.; Koeppe, R.A.; Albin, R.L.; Frey, K.A.; Müller, M.L.T.M.; Bohnen, N.I. Quantification of brain cholinergic denervation in dementia with Lewy bodies using PET imaging with [18F]-FEOBV. Mol. Psychiatry, 2019, 24(3), 322-327.
[http://dx.doi.org/10.1038/s41380-018-0130-5] [PMID: 30082840]
[13]
de la Torre, J.; Aliev, G.; Perry, G. Drug therapy in Alzheimer’s disease. N. Engl. J. Med., 2004, 351(18), 1911-1913.
[http://dx.doi.org/10.1056/NEJM200410283511822] [PMID: 15509830]
[14]
de La Torre, J.C. Alzheimer’s disease is a vasocognopathy: A new term to describe its nature. Neurol. Res., 2004, 26(5), 517-524.
[http://dx.doi.org/10.1179/016164104225016254] [PMID: 15265269]
[15]
de la Torre, J.C. Is Alzheimer’s disease a neurodegenrative or vascular disorder? (vol 3, pg 184, 2004). Lancet Neurol., 2004, 3(5), 270-270.
[PMID: 15099540]
[16]
Scheffer, S.; Hermkens, D.M.A.; van der Weerd, L.; de Vries, H.E.; Daemen, M.J.A.P. Vascular hypothesis of Alzheimer disease. Arterioscler. Thromb. Vasc. Biol., 2021, 41(4), 1265-1283.
[http://dx.doi.org/10.1161/ATVBAHA.120.311911] [PMID: 33626911]
[17]
Bourgade, K. Anti-viral properties of Amyloid-β Peptides., J Alzheimers Dis., 2016, 54(3), 859-878.
[18]
Bourgade, K.; Garneau, H.; Giroux, G.; Le Page, A.Y.; Bocti, C.; Dupuis, G.; Frost, E.H.; Fülöp, T., Jr β-Amyloid peptides display protective activity against the human Alzheimer’s disease-associated herpes simplex virus-1. Biogerontology, 2015, 16(1), 85-98.
[http://dx.doi.org/10.1007/s10522-014-9538-8] [PMID: 25376108]
[19]
Bourgade, K.; Le Page, A.; Bocti, C.; Witkowski, J.M.; Dupuis, G.; Frost, E.H.; Fülöp, T., Jr Protective effect of Amyloid-β Peptides against Herpes Simplex Virus-1 infection in a neuronal cell culture model. J. Alzheimers Dis., 2016, 50(4), 1227-1241.
[http://dx.doi.org/10.3233/JAD-150652] [PMID: 26836158]
[20]
Fulop, T.; Ramassamy, C.; Lévesque, S.; Frost, E.H.; Laurent, B.; Lacombe, G.; Khalil, A.; Larbi, A.; Hirokawa, K.; Desroches, M.; Rodrigues, S.; Bourgade, K.; Cohen, A.A.; Witkowski, J.M. Viruses - a major cause of amyloid deposition in the brain. Expert Rev. Neurother., 2023, 23(9), 775-790.
[http://dx.doi.org/10.1080/14737175.2023.2244162] [PMID: 37551672]
[21]
Fulop, T.; Witkowski, J.M.; Bourgade, K.; Khalil, A.; Zerif, E.; Larbi, A.; Hirokawa, K.; Pawelec, G.; Bocti, C.; Lacombe, G.; Dupuis, G.; Frost, E.H. Can an infection hypothesis explain the beta amyloid hypothesis of Alzheimer’s disease? Front. Aging Neurosci., 2018, 10, 224.
[http://dx.doi.org/10.3389/fnagi.2018.00224] [PMID: 30087609]
[22]
Akiyama, H.; Arai, T.; Kondo, H.; Tanno, E.; Haga, C.; Ikeda, K. Cell mediators of inflammation in the Alzheimer disease brain. Alzheimer Dis. Assoc. Disord., 2000, 14(Suppl.), S47-S53.
[http://dx.doi.org/10.1097/00002093-200000001-00008] [PMID: 10850730]
[23]
Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B.L.; Finch, C.E.; Frautschy, S.; Griffin, W.S.; Hampel, H.; Hull, M.; Landreth, G.; Lue, L.; Mrak, R.; Mackenzie, I.R.; McGeer, P.L.; O’Banion, M.K.; Pachter, J.; Pasinetti, G.; Plata-Salaman, C.; Rogers, J.; Rydel, R.; Shen, Y.; Streit, W.; Strohmeyer, R.; Tooyoma, I.; Van Muiswinkel, F.L.; Veerhuis, R.; Walker, D.; Webster, S.; Wegrzyniak, B.; Wenk, G.; Wyss-Coray, T. Inflammation and Alzheimer’s disease. Neurobiol. Aging, 2000, 21(3), 383-421.
[http://dx.doi.org/10.1016/S0197-4580(00)00124-X] [PMID: 10858586]
[24]
Pillai, J.A.; Bena, J.; Bebek, G.; Bekris, L.M.; Bonner-Jackson, A.; Kou, L.; Pai, A.; Sørensen, L.; Neilsen, M.; Rao, S.M.; Chance, M.; Lamb, B.T.; Leverenz, J.B. Inflammatory pathway analytes predicting rapid cognitive decline in MCI stage of Alzheimer’s disease. Ann. Clin. Transl. Neurol., 2020, 7(7), 1225-1239.
[http://dx.doi.org/10.1002/acn3.51109] [PMID: 32634865]
[25]
Pillai, J.A.; Maxwell, S.; Bena, J.; Bekris, L.M.; Rao, S.M.; Chance, M.; Lamb, B.T.; Leverenz, J.B. Key inflammatory pathway activations in the MCI stage of Alzheimer’s disease. Ann. Clin. Transl. Neurol., 2019, 6(7), 1248-1262.
[http://dx.doi.org/10.1002/acn3.50827] [PMID: 31353852]
[26]
Cummings, J.; Aisen, P.; Lemere, C.; Atri, A.; Sabbagh, M.; Salloway, S. Aducanumab produced a clinically meaningful benefit in association with amyloid lowering. Alzheimers Res. Ther., 2021, 13(1), 98.
[http://dx.doi.org/10.1186/s13195-021-00838-z] [PMID: 33971962]
[27]
Padala, S.P.; Yarns, B.C. Under-represented populations left out of alzheimer’s disease treatment with aducanumab: Commentary on ethics. J. Alzheimers Dis. Rep., 2022, 6(1), 345-348.
[http://dx.doi.org/10.3233/ADR-220023] [PMID: 35891635]
[28]
Stepanchuk, A.A.; Heyne, B.; Stys, P.K. Complex photophysical properties of k114 make for a versatile fluorescent probe for amyloid detection. ACS Chem. Neurosci., 2021, 12(7), 1273-1280.
[http://dx.doi.org/10.1021/acschemneuro.1c00101] [PMID: 33705095]
[29]
Setti, S.E.; Raymick, J.; Hanig, J.; Sarkar, S. In vivo demonstration of Congo Red labeled amyloid plaques via perfusion in the Alzheimer disease rat model. J. Neurosci. Methods, 2021, 353, 109082.
[http://dx.doi.org/10.1016/j.jneumeth.2021.109082] [PMID: 33508413]
[30]
Iadanza, M.G.; Jackson, M.P.; Hewitt, E.W.; Ranson, N.A.; Radford, S.E. A new era for understanding amyloid structures and disease. Nat. Rev. Mol. Cell Biol., 2018, 19(12), 755-773.
[http://dx.doi.org/10.1038/s41580-018-0060-8] [PMID: 30237470]
[31]
Selmani, V.; Robbins, K.J.; Ivancic, V.A.; Lazo, N.D. K114 ( trans, trans )-bromo-2,5-bis(4-hydroxystyryl)benzene is an efficient detector of cationic amyloid fibrils. Protein Sci., 2015, 24(3), 420-425.
[http://dx.doi.org/10.1002/pro.2620] [PMID: 25524064]
[32]
LeVine, H., III Mechanism of Aβ(1−40) Fibril-Induced Fluorescence of ( trans, trans )-1-Bromo-2,5-bis(4-hydroxystyryl)benzene (K114). Biochemistry, 2005, 44(48), 15937-15943.
[http://dx.doi.org/10.1021/bi051252l] [PMID: 16313197]
[33]
Crystal, A.S.; Giasson, B.I.; Crowe, A.; Kung, M.P.; Zhuang, Z.P.; Trojanowski, J.Q.; Lee, V.M.Y. A comparison of amyloid fibrillogenesis using the novel fluorescent compound K114. J. Neurochem., 2003, 86(6), 1359-1368.
[http://dx.doi.org/10.1046/j.1471-4159.2003.01949.x] [PMID: 12950445]
[34]
Stepanchuk, A.A.; Barber, P.A.; Lashley, T.; Joseph, J.T.; Stys, P.K. Quantitative detection of grey and white matter amyloid pathology using a combination of K114 and CRANAD-3 fluorescence. Neurobiol. Dis., 2021, 161, 105540.
[http://dx.doi.org/10.1016/j.nbd.2021.105540] [PMID: 34751140]
[35]
Elghetany, M.T.; Saleem, A. Methods for staining amyloid in tissues: A review. Stain Technol., 1988, 63(4), 201-212.
[http://dx.doi.org/10.3109/10520298809107185] [PMID: 2464206]
[36]
Glenner, G.G.; Eanes, E.D.; Page, D.L. The relation of the properties of Congo red-stained amyloid fibrils to the -conformation. J. Histochem. Cytochem., 1972, 20(10), 821-826.
[http://dx.doi.org/10.1177/20.10.821] [PMID: 4638557]
[37]
Styren, S.D.; Hamilton, R.L.; Styren, G.C.; Klunk, W.E. X-34, a fluorescent derivative of Congo red: A novel histochemical stain for Alzheimer’s disease pathology. J. Histochem. Cytochem., 2000, 48(9), 1223-1232.
[http://dx.doi.org/10.1177/002215540004800906] [PMID: 10950879]
[38]
Skovronsky, D.M.; Zhang, B.; Kung, M.P.; Kung, H.F.; Trojanowski, J.Q.; Lee, V.M.Y. In vivo detection of amyloid plaques in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2000, 97(13), 7609-7614.
[http://dx.doi.org/10.1073/pnas.97.13.7609] [PMID: 10861023]
[39]
Schmidt, M.L.; Schuck, T.; Sheridan, S.; Kung, M.P.; Kung, H.; Zhuang, Z.P.; Bergeron, C.; Lamarche, J.S.; Skovronsky, D.; Giasson, B.I.; Lee, V.M.Y.; Trojanowski, J.Q. The fluorescent Congo red derivative, (trans, trans)-1-bromo-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene (BSB), labels diverse β-pleated sheet structures in postmortem human neurodegenerative disease brains. Am. J. Pathol., 2001, 159(3), 937-943.
[http://dx.doi.org/10.1016/S0002-9440(10)61769-5] [PMID: 11549586]
[40]
Setti, S.E.; Das, N.; Raymick, J.; Hanig, J.; Sarkar, S. Evaluation of Styrylbenzene analog- FSB and its affinity to bind parenchymal plaques and tangles in patients of Alzheimer’s disease. Metab. Brain Dis., 2022, 37(3), 639-651.
[http://dx.doi.org/10.1007/s11011-021-00885-3] [PMID: 35064472]
[41]
Puchtler, H.; Sweat, F. Congo red as a stain for fluorescence microscopy of amyloid. J. Histochem. Cytochem., 1965, 13(8), 693-694.
[http://dx.doi.org/10.1177/13.8.693] [PMID: 4160077]
[42]
Kelényi, G. Thioflavin S fluorescent and Congo red anisotropic stainings in the histologic demonstration of amyloid. Acta Neuropathol., 1967, 7(4), 336-348.
[http://dx.doi.org/10.1007/BF00688089] [PMID: 4166287]
[43]
Schmued, L.; Raymick, J.; Tolleson, W.; Sarkar, S.; Zhang, Y.H.; Bell-Cohn, A. Introducing Amylo-Glo, a novel fluorescent amyloid specific histochemical tracer especially suited for multiple labeling and large scale quantification studies. J. Neurosci. Methods, 2012, 209(1), 120-126.
[http://dx.doi.org/10.1016/j.jneumeth.2012.05.019] [PMID: 22705750]
[44]
Åslund, A.; Sigurdson, C.J.; Klingstedt, T.; Grathwohl, S.; Bolmont, T.; Dickstein, D.L.; Glimsdal, E.; Prokop, S.; Lindgren, M.; Konradsson, P.; Holtzman, D.M.; Hof, P.R.; Heppner, F.L.; Gandy, S.; Jucker, M.; Aguzzi, A.; Hammarström, P.; Nilsson, K.P.R. Novel pentameric thiophene derivatives for in vitro and in vivo optical imaging of a plethora of protein aggregates in cerebral amyloidoses. ACS Chem. Biol., 2009, 4(8), 673-684.
[http://dx.doi.org/10.1021/cb900112v] [PMID: 19624097]
[45]
Sigurdson, C.J.; Nilsson, K.P.R.; Hornemann, S.; Manco, G.; Polymenidou, M.; Schwarz, P.; Leclerc, M.; Hammarström, P.; Wüthrich, K.; Aguzzi, A. Prion strain discrimination using luminescent conjugated polymers. Nat. Methods, 2007, 4(12), 1023-1030.
[http://dx.doi.org/10.1038/nmeth1131] [PMID: 18026110]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy