Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Review Article

Present State in the Development of Aerogel and Xerogel and their Applications for Wastewater Treatment: A Review

Author(s): Yaksha Verma, Gaurav Sharma*, Amit Kumar, Pooja Dhiman and Florian J. Stadler

Volume 11, Issue 3, 2024

Published on: 12 January, 2024

Page: [236 - 271] Pages: 36

DOI: 10.2174/0122133461273226231208060050

Price: $65

Abstract

This comprehensive analysis investigates the current state of development and emerging applications of aerogels and xerogels in wastewater treatment. Aerogels and xerogels, which are characterized by their distinctive porosity architectures and extraordinary material qualities (low density and high surface area), have received much interest in recent years for their potential to transform the field of wastewater treatment. In this study, we present a complete overview of the synthesis processes and structural properties of these materials, highlighting current advancements and innovations. As adsorbents, catalysts, thermal insulation materials, or drug delivery matrices, they have been employed in a number of different disciplines. Aerogels and xerogels have demonstrated their adsorption capability by effectively collecting a wide spectrum of pollutants contained in wastewater. These include the removal of potentially hazardous and deleterious components such as metal ions and organic dyes, which are prevalent in wastewater streams, as well as other organic compounds. Our analysis not only covers the synthesis and applications of aerogels and xerogels, but it also highlights eco-friendly synthesis alternatives, in line with the growing demand for sustainable material preparation methods. Against the backdrop of rising global water concerns, this analysis highlights the promising potential of these materials to play a crucial role in providing sustainable wastewater treatment solutions, thereby establishing a critical future goal.

Keywords: Aerogels, xerogels, polymers, pollutants, waste water treatment, eco-friendly synthesis.

Graphical Abstract
[1]
Ren, W.; Zhong, Y.; Meligrana, J.; Anderson, B.; Watt, W.E.; Chen, J.; Leung, H.L. Urbanization, land use, and water quality in Shanghai. Environ. Int., 2003, 29(5), 649-659.
[http://dx.doi.org/10.1016/S0160-4120(03)00051-5] [PMID: 12742408]
[2]
Teng, Y.; Yang, J.; Zuo, R.; Wang, J. Impact of urbanization and industrialization upon surface water quality: A pilot study of Panzhihua mining town. J. Earth Sci., 2011, 22(5), 658-668.
[http://dx.doi.org/10.1007/s12583-011-0217-2]
[3]
Lal, R. Deforestation effects on soil degradation and rehabilitation in western Nigeria. IV. Hydrology and water quality. Land Degrad. Dev., 1997, 8(2), 95-126.
[http://dx.doi.org/10.1002/(SICI)1099-145X(199706)8:2<95::AID-LDR241>3.0.CO;2-K]
[4]
Mukhopadhyay, R.; Sarkar, B.; Khan, E.; Alessi, D.S.; Biswas, J.K.; Manjaiah, K.M.; Eguchi, M.; Wu, K.C.W.; Yamauchi, Y.; Ok, Y.S. Nanomaterials for sustainable remediation of chemical contaminants in water and soil. Crit. Rev. Environ. Sci. Technol., 2022, 52(15), 2611-2660.
[http://dx.doi.org/10.1080/10643389.2021.1886891]
[5]
Hasan, M.M.; Salman, M.S.; Hasan, M.N.; Rehan, A.I.; Awual, M.E.; Rasee, A.I.; Waliullah, R.M.; Hossain, M.S.; Kubra, K.T.; Sheikh, M.C.; Khaleque, M.A.; Marwani, H.M.; Islam, A.; Awual, M.R. Facial conjugate adsorbent for sustainable Pb(II) ion monitoring and removal from contaminated water. Colloids Surf. A Physicochem. Eng. Asp., 2023, 673, 131794.
[http://dx.doi.org/10.1016/j.colsurfa.2023.131794]
[6]
Sheikh, M.C.; Hasan, M.M.; Hasan, M.N.; Salman, M.S.; Kubra, K.T.; Awual, M.E.; Waliullah, R.M.; Rasee, A.I.; Rehan, A.I.; Hossain, M.S.; Marwani, H.M.; Islam, A.; Khaleque, M.A.; Awual, M.R. Toxic cadmium(II) monitoring and removal from aqueous solution using ligand-based facial composite adsorbent. J. Mol. Liq., 2023, 389, 122854.
[http://dx.doi.org/10.1016/j.molliq.2023.122854]
[7]
Anand, A.; Rajchakit, U.; Sarojini, V. Detection and removal of biological contaminants in water: The role of nanotechnology, Nanomaterials for the Detection and Removal of Wastewater Pollutants; Elsevier: Amsterdam, 2020, pp. 69-110.
[http://dx.doi.org/10.1016/B978-0-12-818489-9.00004-9]
[8]
Rajkhowa, S.; Sarma, J.; Das, A.R. Radiological contaminants in water: Pollution, health risk, and treatment, Contamination of Water; Elsevier: Amsterdam, 2021, pp. 217-236.
[http://dx.doi.org/10.1016/B978-0-12-824058-8.00013-X]
[9]
Ismail, M.; Akhtar, K.; Khan, M.I.; Kamal, T.; Khan, M.A.; M Asiri, A.; Seo, J.; Khan, S.B. Pollution, toxicity and carcinogenicity of organic dyes and their catalytic bio-remediation. Curr. Pharm. Des., 2019, 25(34), 3645-3663.
[http://dx.doi.org/10.2174/1381612825666191021142026] [PMID: 31656147]
[10]
Khan, S.A.; Khan, T.A. Clay-hydrogel nanocomposites for adsorptive amputation of environmental contaminants from aqueous phase: A review. J. Environ. Chem. Eng., 2021, 9(4), 105575.
[http://dx.doi.org/10.1016/j.jece.2021.105575]
[11]
Wang, L.K.; Vaccari, D.A.; Li, Y.; Shammas, N.K. Chemical precipitation, Physicochemical treatment processes; Springer: Berlin, Heidelberg, 2005, pp. 141-197.
[http://dx.doi.org/10.1385/1-59259-820-x:141]
[12]
Chen, L.; Xue, Y.; Luo, T.; Wu, F.; Alshawabkeh, A.N. Electrolysis-assisted UV/sulfite oxidation for water treatment with automatic adjustments of solution pH and dissolved oxygen. Chem. Eng. J., 2021, 403, 126278.
[http://dx.doi.org/10.1016/j.cej.2020.126278] [PMID: 33162784]
[13]
Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R. Advanced oxidation processes (AOP) for water purification and recovery. Catal. Today, 1999, 53(1), 51-59.
[http://dx.doi.org/10.1016/S0920-5861(99)00102-9]
[14]
Korngold, E.; Kock, K.; Strathmann, H. Electrodialysis in advanced waste water treatment. Desalination, 1977, 24(1-3), 129-139.
[http://dx.doi.org/10.1016/S0011-9164(00)88079-0]
[15]
Marking, L.L.; Piper, R.G. Carbon filter for removing therapeutants from hatchery water. Prog. Fish-Cult., 1976, 38(2), 69-72.
[http://dx.doi.org/10.1577/1548-8659(1976)38[69:CFFRTF]2.0.CO;2]
[16]
Pirkanniemi, K.; Sillanpää, M. Heterogeneous water phase catalysis as an environmental application: A review. Chemosphere, 2002, 48(10), 1047-1060.
[http://dx.doi.org/10.1016/S0045-6535(02)00168-6] [PMID: 12227510]
[17]
Meng, Y.; Jian, Y.; Li, J.; Wu, H.; Zhang, H.; Saravanamurugan, S.; Yang, S.; Li, H. Surface-active site engineering: Synergy of photo- and supermolecular catalysis in hydrogen transfer enables biomass upgrading and H2 evolution. Chem. Eng. J., 2023, 452, 139477.
[http://dx.doi.org/10.1016/j.cej.2022.139477]
[18]
Awual, M.R.; Hasan, M.M.; Asiri, A.M.; Rahman, M.M. Cleaning the arsenic(V) contaminated water for safe-guarding the public health using novel composite material. Compos., Part B Eng., 2019, 171, 294-301.
[http://dx.doi.org/10.1016/j.compositesb.2019.05.078]
[19]
Awual, M.R.; Hasan, M.M.; Iqbal, J.; Islam, M.A.; Islam, A.; Khandaker, S.; Asiri, A.M.; Rahman, M.M. Ligand based sustainable composite material for sensitive nickel(II) capturing in aqueous media. J. Environ. Chem. Eng., 2020, 8(1), 103591.
[http://dx.doi.org/10.1016/j.jece.2019.103591]
[20]
Dotto, G.L.; McKay, G. Current scenario and challenges in adsorption for water treatment. J. Environ. Chem. Eng., 2020, 8(4), 103988.
[http://dx.doi.org/10.1016/j.jece.2020.103988]
[21]
Sharma, G.; Kumar, A.; Naushad, M.; García-Peñas, A.; Al-Muhtaseb, A.H.; Ghfar, A.A.; Sharma, V.; Ahamad, T.; Stadler, F.J. Fabrication and characterization of Gum arabic-cl-poly(acrylamide) nanohydrogel for effective adsorption of crystal violet dye. Carbohydr. Polym., 2018, 202, 444-453.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.004] [PMID: 30287021]
[22]
Sharma, S.; Sharma, G.; Kumar, A.; AlGarni, T.S.; Naushad, M.; ALOthman, Z.A.; Stadler, F.J. Adsorption of cationic dyes onto carrageenan and itaconic acid-based superabsorbent hydrogel: Synthesis, characterization and isotherm analysis. J. Hazard. Mater., 2022, 421, 126729.
[http://dx.doi.org/10.1016/j.jhazmat.2021.126729] [PMID: 34388920]
[23]
Kubra, K.T.; Hasan, M.M.; Hasan, M.N.; Salman, M.S.; Khaleque, M.A.; Sheikh, M.C.; Rehan, A.I.; Rasee, A.I.; Waliullah, R.M.; Awual, M.E.; Hossain, M.S.; Alsukaibi, A.K.D.; Alshammari, H.M.; Awual, M.R. The heavy lanthanide of Thulium(III) separation and recovery using specific ligand-based facial composite adsorbent. Colloids Surf. A Physicochem. Eng. Asp., 2023, 667, 131415.
[http://dx.doi.org/10.1016/j.colsurfa.2023.131415]
[24]
Salman, M.S.; Sheikh, M.C.; Hasan, M.M.; Hasan, M.N.; Kubra, K.T.; Rehan, A.I.; Awual, M.E.; Rasee, A.I.; Waliullah, R.M.; Hossain, M.S.; Khaleque, M.A.; Alsukaibi, A.K.D.; Alshammari, H.M.; Awual, M.R. Chitosan-coated cotton fiber composite for efficient toxic dye encapsulation from aqueous media. Appl. Surf. Sci., 2023, 622, 157008.
[http://dx.doi.org/10.1016/j.apsusc.2023.157008]
[25]
Salman, M.S.; Hasan, M.N.; Hasan, M.M.; Kubra, K.T.; Sheikh, M.C.; Rehan, A.I.; Waliullah, R.M.; Rasee, A.I.; Awual, M.E.; Hossain, M.S.; Alsukaibi, A.K.D.; Alshammari, H.M.; Awual, M.R. Improving copper(II) ion detection and adsorption from wastewater by the ligand-functionalized composite adsorbent. J. Mol. Struct., 2023, 1282, 135259.
[http://dx.doi.org/10.1016/j.molstruc.2023.135259]
[26]
Awual, M.R.; Hasan, M.M. Fine-tuning mesoporous adsorbent for simultaneous ultra-trace palladium(II) detection, separation and recovery. J. Ind. Eng. Chem., 2015, 21, 507-515.
[http://dx.doi.org/10.1016/j.jiec.2014.03.013]
[27]
Hasan, M.M.; Kubra, K.T.; Hasan, M.N.; Awual, M.E.; Salman, M.S.; Sheikh, M.C.; Rehan, A.I.; Rasee, A.I.; Waliullah, R.M.; Islam, M.S.; Khandaker, S.; Islam, A.; Hossain, M.S.; Alsukaibi, A.K.D.; Alshammari, H.M.; Awual, M.R. Sustainable ligand-modified based composite material for the selective and effective cadmium(II) capturing from wastewater. J. Mol. Liq., 2023, 371, 121125.
[http://dx.doi.org/10.1016/j.molliq.2022.121125]
[28]
Hacıosmanoğlu, G.G.; Mejías, C.; Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Antibiotic adsorption by natural and modified clay minerals as designer adsorbents for wastewater treatment: A comprehensive review. J. Environ. Manage., 2022, 317, 115397.
[http://dx.doi.org/10.1016/j.jenvman.2022.115397] [PMID: 35660825]
[29]
Altintig, E.; Alsancak, A.; Karaca, H.; Angın, D.; Altundag, H. The comparison of natural and magnetically modified zeolites as an adsorbent in methyl violet removal from aqueous solutions. Chem. Eng. Commun., 2022, 209(4), 555-569.
[http://dx.doi.org/10.1080/00986445.2021.1874368]
[30]
Ambika, S.; Kumar, M.; Pisharody, L.; Malhotra, M.; Kumar, G.; Sreedharan, V.; Singh, L.; Nidheesh, P.V.; Bhatnagar, A. Modified biochar as a green adsorbent for removal of hexavalent chromium from various environmental matrices: Mechanisms, methods, and prospects. Chem. Eng. J., 2022, 439, 135716.
[http://dx.doi.org/10.1016/j.cej.2022.135716]
[31]
Wang, K.; Zhai, Y.; Dong, S.; Liu, J.; Wei, D.; Chen, H.; Bai, L.; Yang, H.; Yang, L.; Wang, W. Synthesis of biomass-based polymer brush-on-brush composite for adsorption of copper(II) from aqueous media. Cellulose, 2022, 29(14), 7901-7915.
[http://dx.doi.org/10.1007/s10570-022-04764-7]
[32]
Hamada, T.; Hoshina, H.; Seko, N. Poly(vinyl diglycolic acid ester)-grafted polyethylene/polypropylene fiber adsorbent for selective recovery of samarium. ACS Appl. Polym. Mater., 2022, 4(3), 1846-1854.
[http://dx.doi.org/10.1021/acsapm.1c01731]
[33]
Liu, C.; Zhang, H.X. Modified-biochar adsorbents (MBAs) for heavy-metal ions adsorption: A critical review. J. Environ. Chem. Eng., 2022, 10(2), 107393.
[http://dx.doi.org/10.1016/j.jece.2022.107393]
[34]
Rehan, A.I.; Rasee, A.I.; Awual, M.E.; Waliullah, R.M.; Hossain, M.S.; Kubra, K.T.; Salman, M.S.; Hasan, M.M.; Hasan, M.N.; Sheikh, M.C.; Marwani, H.M.; Khaleque, M.A.; Islam, A.; Awual, M.R. Improving toxic dye removal and remediation using novel nanocomposite fibrous adsorbent. Colloids Surf. A Physicochem. Eng. Asp., 2023, 673, 131859.
[http://dx.doi.org/10.1016/j.colsurfa.2023.131859]
[35]
Awual, M.R. Assessing of lead(III) capturing from contaminated wastewater using ligand doped conjugate adsorbent. Chem. Eng. J., 2016, 289, 65-73.
[http://dx.doi.org/10.1016/j.cej.2015.12.078]
[36]
Awual, M.R. A facile composite material for enhanced cadmium(II) ion capturing from wastewater. J. Environ. Chem. Eng., 2019, 7(5), 103378.
[http://dx.doi.org/10.1016/j.jece.2019.103378]
[37]
Awual, M.R.; Hasan, M.M.; Islam, A.; Asiri, A.M.; Rahman, M.M. Optimization of an innovative composited material for effective monitoring and removal of cobalt(II) from wastewater. J. Mol. Liq., 2020, 298, 112035.
[http://dx.doi.org/10.1016/j.molliq.2019.112035]
[38]
Jain, N.; Garg, M.; Minocha, A.K. Green concrete from sustainable recycled coarse aggregates: Mechanical and durability properties. J. Waste Manag., 2015, 2015, 1-8.
[http://dx.doi.org/10.1155/2015/281043]
[39]
Dhruv Patel, D.; Bhatt, S. Environmental pollution, toxicity profile, and physico-chemical and biotechnological approaches for treatment of textile wastewater. Biotechnol. Genet. Eng. Rev., 2022, 38(1), 33-86.
[http://dx.doi.org/10.1080/02648725.2022.2048434] [PMID: 35297320]
[40]
Thakur, S.; Verma, A.; Kumar, V.; Jin Yang, X.; Krishnamurthy, S.; Coulon, F.; Thakur, V.K. Cellulosic biomass-based sustainable hydrogels for wastewater remediation: Chemistry and prospective. Fuel, 2022, 309, 122114.
[http://dx.doi.org/10.1016/j.fuel.2021.122114]
[41]
Kornprobst, T.; Plank, J. Synthesis and properties of magnesium carbonate xerogels and aerogels. J. Non-Cryst. Solids, 2013, 361, 100-105.
[http://dx.doi.org/10.1016/j.jnoncrysol.2012.10.023]
[42]
Liu, W.; Herrmann, A.K.; Bigall, N.C.; Rodriguez, P.; Wen, D.; Oezaslan, M.; Schmidt, T.J.; Gaponik, N.; Eychmüller, A. Noble metal aerogels-synthesis, characterization, and application as electrocatalysts. Acc. Chem. Res., 2015, 48(2), 154-162.
[http://dx.doi.org/10.1021/ar500237c] [PMID: 25611348]
[43]
Campbell, L.K.; Na, B.K.; Ko, E.I. Synthesis and characterization of titania aerogels. Chem. Mater., 1992, 4(6), 1329-1333.
[http://dx.doi.org/10.1021/cm00024a037]
[44]
Gallegos-Suárez, E.; Pérez-Cadenas, A.F.; Maldonado-Hódar, F.J.; Carrasco-Marín, F. On the micro- and mesoporosity of carbon aerogels and xerogels. The role of the drying conditions during the synthesis processes. Chem. Eng. J., 2012, 181-182, 851-855.
[http://dx.doi.org/10.1016/j.cej.2011.12.002]
[45]
Guzel Kaya, G.; Yilmaz, E.; Deveci, H. Synthesis of sustainable silica xerogels/aerogels using inexpensive steel slag and bean pod ash: A comparison study. Adv. Powder Technol., 2020, 31(3), 926-936.
[http://dx.doi.org/10.1016/j.apt.2019.12.013]
[46]
Ibarra Torres, C.E.; Serrano Quezada, T.E.; Kharissova, O.V.; Kharisov, B.I.; Gómez de la Fuente, M.I. Carbon-based aerogels and xerogels: Synthesis, properties, oil sorption capacities, and DFT simulations. J. Environ. Chem. Eng., 2021, 9(1), 104886.
[http://dx.doi.org/10.1016/j.jece.2020.104886]
[47]
de Oliveira, M.; Frihling, B.E.F.; Velasques, J.; Filho, F.J.C.M.; Cavalheri, P.S.; Migliolo, L. Pharmaceuticals residues and xenobiotics contaminants: Occurrence, analytical techniques and sustainable alternatives for wastewater treatment. Sci. Total Environ., 2020, 705, 135568.
[http://dx.doi.org/10.1016/j.scitotenv.2019.135568] [PMID: 31846817]
[48]
Pérez-Lucas, G.; Aatik, A.E.; Aliste, M.; Navarro, G.; Fenoll, J.; Navarro, S. Removal of contaminants of emerging concern from a wastewater effluent by solar-driven heterogeneous photocatalysis: A case study of pharmaceuticals. Water Air Soil Pollut., 2023, 234(1), 55.
[http://dx.doi.org/10.1007/s11270-023-06075-4]
[49]
Iancu, V.I.; Radu, G.L.; Scutariu, R. A new analytical method for the determination of beta-blockers and one metabolite in the influents and effluents of three urban wastewater treatment plants. Anal. Methods, 2019, 11(36), 4668-4680.
[http://dx.doi.org/10.1039/C9AY01597C]
[50]
Lofrano, G.; Faiella, M.; Carotenuto, M.; Murgolo, S.; Mascolo, G.; Pucci, L.; Rizzo, L. Thirty contaminants of emerging concern identified in secondary treated hospital wastewater and their removal by solar Fenton (like) and sulphate radicals-based advanced oxidation processes. J. Environ. Chem. Eng., 2021, 9(6), 106614.
[http://dx.doi.org/10.1016/j.jece.2021.106614]
[51]
Pérko, J.; Kamenická, B.; Weidlich, T. Degradation of the antibacterial agents triclosan and chlorophene using hydrodechlorination by Al-based alloys. Monatshefte für Chemie-Chemical Monthly., 2018, 149, 1777-1786. Available From: https://inis.iaea.org/search/search.aspx?orig_q=RN:51100995
[52]
Picone, M.; Distefano, G.G.; Marchetto, D.; Russo, M.; Vecchiato, M.; Gambaro, A.; Barbante, C.; Ghirardini, A.V. Fragrance materials (FMs) affect the larval development of the copepod Acartia tonsa: An emerging issue for marine ecosystems. Ecotoxicol. Environ. Saf., 2021, 215, 112146.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112146] [PMID: 33744517]
[53]
Ahmed, M.B.; Johir, M.A.H.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Sornalingam, K. Photolytic and photocatalytic degradation of organic UV filters in contaminated water. Curr. Opin. Green Sustain. Chem., 2017, 6, 85-92.
[http://dx.doi.org/10.1016/j.cogsc.2017.06.010]
[54]
Tong, X.; You, L.; Zhang, J.; Chen, H.; Nguyen, V.T.; He, Y.; Gin, K.Y.H. A comprehensive modelling approach to understanding the fate, transport and potential risks of emerging contaminants in a tropical reservoir. Water Res., 2021, 200, 117298.
[http://dx.doi.org/10.1016/j.watres.2021.117298] [PMID: 34102387]
[55]
Kumari, R.; Vivekanand, V.; Pareek, N. Elimination of alkylphenols from wastewater using various treatment technologies. Current Developments in Biotechnology and Bioengineering; Haq, I.; Kalamdhad, A.; Pandey, A., Eds.; Elsevier: Amsterdam, 2023, pp. 85-102.
[http://dx.doi.org/10.1016/B978-0-323-91902-9.00008-0]
[56]
Alemán, J.V.; Chadwick, A.V.; He, J.; Hess, M.; Horie, K.; Jones, R.G.; Kratochvíl, P.; Meisel, I.; Mita, I.; Moad, G.; Penczek, S.; Stepto, R.F.T. Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure Appl. Chem., 2007, 79(10), 1801-1829.
[http://dx.doi.org/10.1351/pac200779101801]
[57]
Kistler, S.S. Coherent expanded aerogels. Rubber Chem. Technol., 1932, 5(4), 600-603.
[http://dx.doi.org/10.5254/1.3539386]
[58]
Khalil, H.A.; Yahya, E.B.; Jummaat, F.; Adnan, A.; Olaiya, N.; Rizal, S.; Abdullah, C.; Pasquini, D.; Thomas, S. Biopolymers based Aerogels: A review on revolutionary solutions for smart therapeutics delivery. Prog. Mater. Sci., 2022, 2022, 101014.
[59]
Dhua, S.; Gupta, A.K.; Mishra, P. Aerogel: Functional emerging material for potential application in food: A review. Food Bioprocess Technol., 2022, 15(11), 2396-2421.
[http://dx.doi.org/10.1007/s11947-022-02829-w]
[60]
Xu, X.; Chang, Q.; Xue, C.; Li, N.; Wang, H.; Yang, J.; Hu, S. A carbonized carbon dot-modified starch aerogel for efficient solar-powered water evaporation. J. Mater. Chem. A Mater. Energy Sustain., 2022, 10(21), 11712-11720.
[http://dx.doi.org/10.1039/D2TA02302D]
[61]
Liu, H.; Li, A.; Liu, Z.; Tao, Q.; Li, J.; Peng, J.; Liu, Y. Preparation of lightweight and hydrophobic natural biomass-based carbon aerogels for adsorption oils and organic solvents. J. Porous Mater., 2022, 29(4), 1001-1009.
[http://dx.doi.org/10.1007/s10934-022-01233-1]
[62]
Meador, M.A.B.; Malow, E.J.; Silva, R.; Wright, S.; Quade, D.; Vivod, S.L.; Guo, H.; Guo, J.; Cakmak, M. Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine. ACS Appl. Mater. Interfaces, 2012, 4(2), 536-544.
[http://dx.doi.org/10.1021/am2014635] [PMID: 22233638]
[63]
Radwan-Pragłowska, J.; Piątkowski, M.; Janus, Ł.; Bogda, D.; Matysek, D. Biodegradable, pH-responsive chitosan aerogels for biomedical applications. RSC Advances, 2017, 7(52), 32960-32965.
[http://dx.doi.org/10.1039/C6RA27474A]
[64]
Guo, H.; Meador, M.A.B.; McCorkle, L.; Quade, D.J.; Guo, J.; Hamilton, B.; Cakmak, M.; Sprowl, G. Polyimide aerogels cross-linked through amine functionalized polyoligomeric silsesquioxane. ACS Appl. Mater. Interfaces, 2011, 3(2), 546-552.
[http://dx.doi.org/10.1021/am101123h] [PMID: 21294517]
[65]
Kistler, S.S. Coherent expanded aerogels and jellies. Nature, 1931, 127(3211), 741-741.
[http://dx.doi.org/10.1038/127741a0]
[66]
Kistler, S.S. Method of making aerogels. Google Patents, 1941.
[67]
Kistler, S.S. Treatment of aerogels to render them waterproof. Google Patents, 1952.
[68]
Pierre, A.C. History of aerogels.Aerogels Handbook; Springer: Cham, 2011, pp. 3-18.
[69]
Russo, R.E.; Hunt, A.J. Comparison of ethyl versus methyl sol-gels for silica aerogels using polar nephelometry. J. Non-Cryst. Solids, 1986, 86(1-2), 219-230.
[http://dx.doi.org/10.1016/0022-3093(86)90490-4]
[70]
Nicolaon, G.; Teichner, S. On a new process of preparation of silica xerogels and aerogels and their textural properties. Bull. Soc. Chim. Fr., 1968, 1(5), 1900.
[71]
Tewari, P.H.; Hunt, A.J.; Lofftus, K.D. Ambient-temperature supercritical drying of transparent silica aerogels. Mater. Lett., 1985, 3(9-10), 363-367.
[http://dx.doi.org/10.1016/0167-577X(85)90077-1]
[72]
Pekala, R.W. Low density, resorcinol-formaldehyde aerogels, Lawrence Livermore National Lab. US4997804A, 1989.
[73]
Smith, D.M.; Deshpande, R.; Jeffrey Brinke, C. Preparation of low-density aerogels at ambient pressure. Proc. MRS, 1992, 271, 567-572.
[http://dx.doi.org/10.1557/PROC-271-567]
[74]
Pekala, R.W. Organic aerogels from the polycondensation of resorcinol with formaldehyde. J. Mater. Sci., 1989, 24(9), 3221-3227.
[http://dx.doi.org/10.1007/BF01139044]
[75]
Gash, A.E.; Tillotson, T.M.; Satcher, J.H., Jr; Poco, J.F.; Hrubesh, L.W.; Simpson, R.L. Use of epoxides in the sol− gel synthesis of porous iron (III) oxide monoliths from Fe (III) salts. Chem. Mater., 2001, 13(3), 999-1007.
[http://dx.doi.org/10.1021/cm0007611]
[76]
Gash, A.E.; Tillotson, T.M.; Satcher, J.H., Jr; Hrubesh, L.W.; Simpson, R.L. New sol-gel synthetic route to transition and main-group metal oxide aerogels using inorganic salt precursors. J. Non-Cryst. Solids, 2001, 285(1-3), 22-28.
[http://dx.doi.org/10.1016/S0022-3093(01)00427-6]
[77]
Mohanan, J.L.; Brock, S.L. A new addition to the aerogel community: Unsupported CdS aerogels with tunable optical properties. J. Non-Cryst. Solids, 2004, 350, 1-8.
[http://dx.doi.org/10.1016/j.jnoncrysol.2004.05.020]
[78]
Aliev, A.E.; Oh, J.; Kozlov, M.E.; Kuznetsov, A.A.; Fang, S.; Fonseca, A.F.; Ovalle, R.; Lima, M.D.; Haque, M.H.; Gartstein, Y.N.; Zhang, M.; Zakhidov, A.A.; Baughman, R.H. Giant-stroke, superelastic carbon nanotube aerogel muscles. Science, 2009, 323(5921), 1575-1578.
[http://dx.doi.org/10.1126/science.1168312] [PMID: 19299612]
[79]
Worsley, M.A.; Pauzauskie, P.J.; Olson, T.Y.; Biener, J.; Satcher, J.H., Jr; Baumann, T.F. Synthesis of graphene aerogel with high electrical conductivity. J. Am. Chem. Soc., 2010, 132(40), 14067-14069.
[http://dx.doi.org/10.1021/ja1072299] [PMID: 20860374]
[80]
Leventis, N.; Sadekar, A.; Chandrasekaran, N.; Sotiriou-Leventis, C. Click synthesis of monolithic silicon carbide aerogels from polyacrylonitrile-coated 3D silica networks. Chem. Mater., 2010, 22(9), 2790-2803.
[http://dx.doi.org/10.1021/cm903662a]
[81]
Yang, M.; Yuan, Y.; Li, Y.; Sun, X.; Wang, S.; Liang, L.; Ning, Y.; Li, J.; Yin, W.; Li, Y. Anisotropic electromagnetic absorption of aligned Ti3C2T x MXene/gelatin nanocomposite aerogels. ACS Appl. Mater. Interfaces, 2020, 12(29), 33128-33138.
[http://dx.doi.org/10.1021/acsami.0c09726] [PMID: 32597165]
[82]
Nešić, A.; Gordić, M.; Davidović, S.; Radovanović, Ž.; Nedeljković, J.; Smirnova, I.; Gurikov, P. Pectin-based nanocomposite aerogels for potential insulated food packaging application. Carbohydr. Polym., 2018, 195, 128-135.
[http://dx.doi.org/10.1016/j.carbpol.2018.04.076] [PMID: 29804960]
[83]
Gu, H.; Gao, C.; Zhou, X.; Du, A.; Naik, N.; Guo, Z. Nanocellulose nanocomposite aerogel towards efficient oil and organic solvent adsorption. Adv. Compos. Hybrid Mater., 2021, 4(3), 459-468.
[http://dx.doi.org/10.1007/s42114-021-00289-y]
[84]
Zeng, G.; Shi, N.; Hess, M.; Chen, X.; Cheng, W.; Fan, T.; Niederberger, M. A general method of fabricating flexible spinel-type oxide/reduced graphene oxide nanocomposite aerogels as advanced anodes for lithium-ion batteries. ACS Nano, 2015, 9(4), 4227-4235.
[http://dx.doi.org/10.1021/acsnano.5b00576] [PMID: 25783818]
[85]
Jayaseelan, S.S.; Radhakrishnan, S.; Saravanakumar, B.; Seo, M.K.; Khil, M.S.; Kim, H.Y.; Kim, B.S. Mesoporous 3D Ni-Co2O4/MWCNT nanocomposite aerogels prepared by a supercritical CO2 drying method for high performance hybrid supercapacitor electrodes. Colloids Surf. A Physicochem. Eng. Asp., 2018, 538, 451-459.
[http://dx.doi.org/10.1016/j.colsurfa.2017.11.037]
[86]
Jiao, Y.; Wan, C.; Bao, W.; Gao, H.; Liang, D.; Li, J. Facile hydrothermal synthesis of Fe3O4@cellulose aerogel nanocomposite and its application in Fenton-like degradation of Rhodamine B. Carbohydr. Polym., 2018, 189, 371-378.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.028] [PMID: 29580421]
[87]
Hosseini, H.; Zirakjou, A.; McClements, D.J.; Goodarzi, V.; Chen, W.H. Removal of methylene blue from wastewater using ternary nanocomposite aerogel systems: Carboxymethyl cellulose grafted by polyacrylic acid and decorated with graphene oxide. J. Hazard. Mater., 2022, 421, 126752.
[http://dx.doi.org/10.1016/j.jhazmat.2021.126752] [PMID: 34352524]
[88]
Wang, C.; Gao, F.; Ko, S.; Liu, H.; Yi, H.; Tang, X. Structural control for inhibiting SO2 adsorption in porous MnCe nanowire aerogel catalysts for low-temperature NH3-SCR. Chem. Eng. J., 2022, 434, 134729.
[http://dx.doi.org/10.1016/j.cej.2022.134729]
[89]
Zhi, M.; Tang, H.; Wu, M.; Ouyang, C.; Hong, Z.; Wu, N. Synthesis and photocatalysis of metal oxide aerogels: A review. Energy Fuels, 2022, 36(19), 11359-11379.
[http://dx.doi.org/10.1021/acs.energyfuels.2c01049]
[90]
Wu, Y.; Wang, X.; Shen, J. Metal oxide aerogels for high-temperature applications. J. Sol-Gel Sci. Technol., 2023, 106(2), 360-80.
[91]
El-Naggar, M.E.; Othman, S.I.; Allam, A.A.; Morsy, O.M. Synthesis, drying process and medical application of polysaccharide-based aerogels. Int. J. Biol. Macromol., 2020, 145, 1115-1128.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.037] [PMID: 31678101]
[92]
Williams, J.C.; Meador, M.A.B.; McCorkle, L.; Mueller, C.; Wilmoth, N. Synthesis and properties of step-growth polyamide aerogels cross-linked with triacid chlorides. Chem. Mater., 2014, 26(14), 4163-4171.
[http://dx.doi.org/10.1021/cm5012313]
[93]
Gu, Z.Y.; Gao, X.D.; Li, X.M.; Jiang, Z.W.; Huang, Y.D. Nanoporous TiO2 aerogel blocking layer with enhanced efficiency for dyesensitized solar cells. J. Alloys Compd., 2014, 590, 33-40.
[http://dx.doi.org/10.1016/j.jallcom.2013.12.097]
[94]
Zhu, L.; Zong, L.; Wu, X.; Li, M.; Wang, H.; You, J.; Li, C. Shapeable fibrous aerogels of metal-organic-frameworks templated with nanocellulose for rapid and large-capacity adsorption. ACS Nano, 2018, 12(5), 4462-4468.
[http://dx.doi.org/10.1021/acsnano.8b00566] [PMID: 29741869]
[95]
Zhao, Y.; Zhong, K.; Liu, W.; Cui, S.; Zhong, Y.; Jiang, S. Preparation and oil adsorption properties of hydrophobic microcrystalline cellulose aerogel. Cellulose, 2020, 27(13), 7663-7675.
[http://dx.doi.org/10.1007/s10570-020-03309-0]
[96]
Zubizarreta, L.; Arenillas, A.; Menéndez, J.A.; Pis, J.J.; Pirard, J.P.; Job, N. Microwave drying as an effective method to obtain porous carbon xerogels. J. Non-Cryst. Solids, 2008, 354(33), 4024-4026.
[http://dx.doi.org/10.1016/j.jnoncrysol.2008.06.003]
[97]
Yang, J.; Li, S.; Yan, L.; Liu, J.; Wang, F. Compressive behaviors and morphological changes of resorcinol-formaldehyde aerogel at high strain rates. Microporous Mesoporous Mater., 2010, 133(1-3), 134-140.
[http://dx.doi.org/10.1016/j.micromeso.2010.04.025]
[98]
Chen, D.; Dong, K.; Gao, H.; Zhuang, T.; Huang, X.; Wang, G. Vacuum-dried flexible hydrophobic aerogels using bridged methylsiloxane as reinforcement: Performance regulation with alkylorthosilicate or alkyltrimethoxysilane co-precursors. New J. Chem., 2019, 43(5), 2204-2212.
[http://dx.doi.org/10.1039/C8NJ04038A]
[99]
Bheekhun, N.; Talib, A.; Rahim, A.; Hassan, M.R. Aerogels in aerospace: An overview. Adv. Mater. Sci. Eng., 2013, 2013.
[100]
García-González, C.A.; Sosnik, A.; Kalmár, J.; De Marco, I.; Erkey, C.; Concheiro, A.; Alvarez-Lorenzo, C. Aerogels in drug delivery: From design to application. J. Control. Release, 2021, 332, 40-63.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.012] [PMID: 33600880]
[101]
Du, R.; Zheng, Z.; Mao, N.; Zhang, N.; Hu, W.; Zhang, J. Fluorosurfactants-directed preparation of homogeneous and hierarchical-porosity CMP aerogels for gas sorption and oil cleanup. Adv. Sci. (Weinh.), 2015, 2(1-2), 1400006.
[http://dx.doi.org/10.1002/advs.201400006] [PMID: 27980898]
[102]
Yu, H.; Oh, S.; Han, Y.; Lee, S.; Jeong, H.S.; Hong, H.J. Modified cellulose nanofibril aerogel: Tunable catalyst support for treatment of 4-Nitrophenol from wastewater. Chemosphere, 2021, 285, 131448.
[http://dx.doi.org/10.1016/j.chemosphere.2021.131448] [PMID: 34329132]
[103]
Adetunji, L.R.; Adekunle, A.; Orsat, V.; Raghavan, V. Advances in the pectin production process using novel extraction techniques: A review. Food Hydrocoll., 2017, 62, 239-250.
[http://dx.doi.org/10.1016/j.foodhyd.2016.08.015]
[104]
He, Z.; Liang, X.; Xiang, W. High-efficiency Ca2+ doping all-inorganic nanocrystals (CsPbBr3 and CsPbBr1I2) encapsulated in a superhydrophobic aerogel inorganic matrix for white light-emitting diodes. Chem. Eng. J., 2022, 427, 130964.
[http://dx.doi.org/10.1016/j.cej.2021.130964]
[105]
Cheng, Y.; Li, L.; Liu, Z.; Yan, S.; Cheng, F.; Yue, Y.; Jia, S.; Wang, J.; Gao, Y; Li, L. 3D porous MXene aerogel through gas foaming for multifunctional pressure sensor. Research., 2022, 2022, 9843268.
[http://dx.doi.org/10.34133/2022/9843268]
[106]
Zhang, X.; Cheng, X.; Si, Y.; Yu, J.; Ding, B. Elastic and highly fatigue resistant ZrO2-SiO2 nanofibrous aerogel with low energy dissipation for thermal insulation. Chem. Eng. J., 2022, 433, 133628.
[http://dx.doi.org/10.1016/j.cej.2021.133628]
[107]
Nie, Z.J.; Wang, J.X.; Huang, C.Y.; Feng, J.F.; Fan, S.T.; Tan, M.; Yang, C.; Li, B.J.; Zhang, S. Hierarchically and wood-like cyclodextrin aerogels with enhanced thermal insulation and wide spectrum acoustic absorption. Chem. Eng. J., 2022, 446, 137280.
[http://dx.doi.org/10.1016/j.cej.2022.137280]
[108]
Sun, J.; Zhang, J.; Shang, M.; Zhang, M.; Zhao, X.; Liu, S.; Liu, X.; Liu, S.; Yi, X. N, O co-doped carbon aerogel derived from sodium alginate/melamine composite for all-solid-state supercapacitor. Appl. Surf. Sci., 2023, 608, 155109.
[http://dx.doi.org/10.1016/j.apsusc.2022.155109]
[109]
Xiao, P.; Cao, L.; Wang, H.; Yan, G.; Chen, Q. Rational design of three-dimensional metal-organic framework-derived active material/graphene aerogel composite electrodes for alkaline battery-supercapacitor hybrid device. Surf. Interfaces, 2022, 33, 102266.
[http://dx.doi.org/10.1016/j.surfin.2022.102266]
[110]
Lee, J.H.; Park, S.J. Recent advances in preparations and applications of carbon aerogels: A review. Carbon, 2020, 163, 1-18.
[http://dx.doi.org/10.1016/j.carbon.2020.02.073]
[111]
Hu, L.; He, R.; Lei, H.; Fang, D. Carbon aerogel for insulation applications: A review. Int. J. Thermophys., 2019, 40(4), 39.
[http://dx.doi.org/10.1007/s10765-019-2505-5]
[112]
Meng, Y.; Liu, T.; Yu, S.; Cheng, Y.; Lu, J.; Wang, H. A lignin-based carbon aerogel enhanced by graphene oxide and application in oil/water separation. Fuel, 2020, 278, 118376.
[http://dx.doi.org/10.1016/j.fuel.2020.118376]
[113]
Gan, G.; Li, X.; Fan, S.; Wang, L.; Qin, M.; Yin, Z.; Chen, G. Carbon aerogels for environmental clean‐up. Eur. J. Inorg. Chem., 2019, 2019(27), 3126-3141.
[http://dx.doi.org/10.1002/ejic.201801512]
[114]
Geng, S.; Maennlein, A.; Yu, L.; Hedlund, J.; Oksman, K. Monolithic carbon aerogels from bioresources and their application for CO2 adsorption. Microporous Mesoporous Mater., 2021, 323, 111236.
[http://dx.doi.org/10.1016/j.micromeso.2021.111236]
[115]
Gurav, J.L.; Jung, I-K.; Park, H-H.; Kang, E.S.; Nadargi, D.Y. Silica aerogel: Synthesis and applications. J. Nanomater., 2010, 1.
[116]
Linhares, T.; Pessoa de Amorim, M.T.; Durães, L. Silica aerogel composites with embedded fibres: A review on their preparation, properties and applications. J. Mater. Chem. A Mater. Energy Sustain., 2019, 7(40), 22768-22802.
[http://dx.doi.org/10.1039/C9TA04811A]
[117]
Gibiat, V.; Lefeuvre, O.; Woignier, T.; Pelous, J.; Phalippou, J. Acoustic properties and potential applications of silica aerogels. J. Non-Cryst. Solids, 1995, 186, 244-255.
[http://dx.doi.org/10.1016/0022-3093(95)00049-6]
[118]
Venkateswara Rao, A.; Bhagat, S.D.; Hirashima, H.; Pajonk, G.M. Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J. Colloid Interface Sci., 2006, 300(1), 279-285.
[http://dx.doi.org/10.1016/j.jcis.2006.03.044] [PMID: 16707131]
[119]
Tang, R.; Hong, W.; Srinivasakannan, C.; Liu, X.; Wang, X.; Duan, X. A novel mesoporous Fe-silica aerogel composite with phenomenal adsorption capacity for malachite green. Separ. Purif. Tech., 2022, 281, 119950.
[http://dx.doi.org/10.1016/j.seppur.2021.119950]
[120]
Mazrouei-Sebdani, Z.; Salimian, S.; Khoddami, A.; Shams-Ghahfarokhi, F. Sodium silicate based aerogel for absorbing oil from water: The impact of surface energy on the oil/water separation. Mater. Res. Express, 2019, 6(8), 085059.
[http://dx.doi.org/10.1088/2053-1591/ab1eed]
[121]
Saad, N.; Chaaban, M.; Patra, D.; Ghanem, A.; El-Rassy, H. Molecularly imprinted phenyl-functionalized silica aerogels: Selective adsorbents for methylxanthines and PAHs. Microporous Mesoporous Mater., 2020, 292, 109759.
[http://dx.doi.org/10.1016/j.micromeso.2019.109759]
[122]
Ardani, M.; Imani, M.; Tadjarodi, A. Core shell Fe3O4@TiO2/silica aerogel nanocomposite; synthesis and study of structural, magnetic and photocatalytic properties. Microporous Mesoporous Mater., 2022, 338, 111757.
[http://dx.doi.org/10.1016/j.micromeso.2022.111757]
[123]
Lamy-Mendes, A.; Malfait, W.J.; Sadeghpour, A.; Girão, A.V.; Silva, R.F.; Durães, L. Influence of 1D and 2D carbon nanostructures in silica-based aerogels. Carbon, 2021, 180, 146-162.
[http://dx.doi.org/10.1016/j.carbon.2021.05.004]
[124]
Yao, Y.; Zhang, X.; Guo, Z.; Liu, W.; Hu, C.; Ru, Y.; Zhang, L.; Jiang, C.; Qiao, J. Preparation and application of recyclable polymer aerogels from styrene-maleic anhydride alternating copolymers. Chem. Eng. J., 2023, 455, 140363.
[http://dx.doi.org/10.1016/j.cej.2022.140363]
[125]
Wang, T.; Long, M.C.; Zhao, H.B.; Liu, B.W.; Shi, H.G.; An, W.L.; Li, S.L.; Xu, S.M.; Wang, Y.Z. An ultralow-temperature superelastic polymer aerogel with high strength as a great thermal insulator under extreme conditions. J. Mater. Chem. A Mater. Energy Sustain., 2020, 8(36), 18698-18706.
[http://dx.doi.org/10.1039/D0TA05542E]
[126]
Lu, J.; Li, Y.; Song, W.; Losego, M.D.; Monikandan, R.; Jacob, K.I.; Xiao, R. Atomic layer deposition onto thermoplastic polymeric nanofibrous aerogel templates for tailored surface properties. ACS Nano, 2020, 14(7), 7999-8011.
[http://dx.doi.org/10.1021/acsnano.9b09497] [PMID: 32644796]
[127]
Lang, X.H.; Zhu, T.Y.; Zou, L.; Prakashan, K.; Zhang, Z.X. Fabrication and characterization of polypropylene aerogel material and aerogel coated hybrid materials for oil-water separation applications. Prog. Org. Coat., 2019, 137, 105370.
[http://dx.doi.org/10.1016/j.porgcoat.2019.105370]
[128]
Zhang, X.; Li, W.; Song, P.; You, B.; Sun, G. Double-cross-linking strategy for preparing flexible, robust, and multifunctional polyimide aerogel. Chem. Eng. J., 2020, 381, 122784.
[http://dx.doi.org/10.1016/j.cej.2019.122784]
[129]
Merillas, B.; Villafañe, F.; Rodríguez-Pérez, M.Á. Super-insulating transparent polyisocyanurate-polyurethane aerogels: Analysis of thermal conductivity and mechanical properties. Nanomaterials (Basel), 2022, 12(14), 2409.
[http://dx.doi.org/10.3390/nano12142409] [PMID: 35889633]
[130]
Pierre, A.C. Introduction to sol-gel processing; Springer Nature: London, 2020.
[http://dx.doi.org/10.1007/978-3-030-38144-8]
[131]
Lin, C.; Ritter, J.A. Effect of synthesis pH on the structure of carbon xerogels. Carbon, 1997, 35(9), 1271-1278.
[http://dx.doi.org/10.1016/S0008-6223(97)00069-9]
[132]
Zubizarreta, L.; Arenillas, A.; Pirard, J.P.; Pis, J.J.; Job, N. Tailoring the textural properties of activated carbon xerogels by chemical activation with KOH. Microporous Mesoporous Mater., 2008, 115(3), 480-490.
[http://dx.doi.org/10.1016/j.micromeso.2008.02.023]
[133]
Fidalgo, A.; Rosa, M.E.; Ilharco, L.M. Chemical control of highly porous silica xerogels: Physical properties and morphology. Chem. Mater., 2003, 15(11), 2186-2192.
[http://dx.doi.org/10.1021/cm031013p]
[134]
Sakuma, W.; Yamasaki, S.; Fujisawa, S.; Kodama, T.; Shiomi, J.; Kanamori, K.; Saito, T. Mechanically strong, scalable, mesoporous xerogels of nanocellulose featuring light permeability, Thermal insulation, and flame self-extinction. ACS Nano, 2021, 15(1), 1436-1444.
[http://dx.doi.org/10.1021/acsnano.0c08769] [PMID: 33405895]
[135]
Kalapathy, U.; Proctor, A.; Shultz, J. Silica xerogels from rice hull ash: Structure, density and mechanical strength as affected by gelation pH and silica concentration. J. Chem. Technol. Biotechnol., 2000, 75(6), 464-468.
[http://dx.doi.org/10.1002/1097-4660(200006)75:6<464::AID-JCTB235>3.0.CO;2-C]
[136]
Lashkovskaya, E.I.; Gaponenko, N.V.; Stepikhova, M.V.; Yablonskiy, A.N.; Andreev, B.A.; Zhivulko, V.D.; Mudryi, A.V.; Martynov, I.L.; Chistyakov, A.A.; Kargin, N.I.; Labunov, V.A.; Raichenok, T.F.; Tikhomirov, S.A.; Timoshenko, V.Y. Optical properties and upconversion luminescence of BaTiO3 xerogel structures doped with erbium and ytterbium. Gels, 2022, 8(6), 347.
[http://dx.doi.org/10.3390/gels8060347] [PMID: 35735691]
[137]
Yamasaki, S.; Sakuma, W.; Yasui, H.; Daicho, K.; Saito, T.; Fujisawa, S.; Isogai, A.; Kanamori, K. Nanocellulose xerogels with high porosities and large specific surface areas. Front Chem., 2019, 7, 316.
[http://dx.doi.org/10.3389/fchem.2019.00316] [PMID: 31134187]
[138]
Hu, T.T.; Liu, F.; Dou, S.; Zhong, L.B.; Cheng, X.; Shao, Z.D.; Zheng, Y.M. Selective adsorption of trace gaseous ammonia from air by a sulfonic acid-modified silica xerogel: Preparation, characterization and performance. Chem. Eng. J., 2022, 443, 136357.
[http://dx.doi.org/10.1016/j.cej.2022.136357]
[139]
Chen, L.; Deng, J.; Yuan, Y.; Hong, S.; Yan, B.; He, S.; Lian, H. Hierarchical porous graphitized carbon xerogel for high performance supercapacitor. Diamond Related Materials, 2022, 121, 108781.
[http://dx.doi.org/10.1016/j.diamond.2021.108781]
[140]
Abel, K.L.; Beger, T.; Poppitz, D.; Zimmermann, R.T.; Kuschel, O.; Sundmacher, K.; Gläser, R. Monolithic Al2O3 Xerogels with Hierarchical Meso‐/Macropore System as Catalyst Supports for Methanation of CO2. ChemCatChem, 2022, 14(15), e202200288.
[http://dx.doi.org/10.1002/cctc.202200288]
[141]
Álvarez Manuel, L.; Alegre Gresa, C.; Napal, P.; Sebastián del Río, D.; Lázaro Elorri, M.J. Effect of nitrogen doping method on the activity of Fe-NC catalysts based on carbon xerogels for fuel cells. 2022. Available From: https://digital.csic.es/handle/10261/275652
[142]
Dahliyanti, A.; Yunitama, D.A.; Rofiqoh, I.M.; Mustapha, M. Synthesis and characterization of silica xerogel from corn husk waste as cationic dyes adsorbent. F1000 Res., 2022, 11, 305.
[http://dx.doi.org/10.12688/f1000research.75979.1] [PMID: 36016989]
[143]
Widiyandari, H.; Pardoyo, P.; Sartika, J.; Putra, O.; Purwanto, A.; Ernawati, L. Synthesis of mesoporous silica xerogel from geothermal sludge using sulfuric acid as gelation agent. Int. J. Eng., 2021, 34, 1569-1575.
[144]
Volfkovich, Y.M.; Rychagov, A.Y.; Sosenkin, V.E. Effect of the porous structure on the electrochemical characteristics of supercapacitor with nanocomposite electrodes based on carbon nanotubes and resorcinol-formaldehyde xerogel. Russ. J. Electrochem., 2022, 58(9), 730-740.
[http://dx.doi.org/10.1134/S1023193522090142]
[145]
Ivanov, P.; Bogdanov, B.; Hristov, Y. Synthesis of hydrophilic and hydrophobic xerogel. J. of Chem. Tech. and Metalurgy, 2017, 52, 457-462.
[146]
Rajalekshmy, G.P.; Rekha, M.R. Wound healing effects of glucose oxidase - peroxidase incorporated alginate diamine PEG-g-poly (PEGMA) xerogels under high glucose conditions: An in vitro evaluation. Materialia (Oxf.), 2022, 23, 101464.
[http://dx.doi.org/10.1016/j.mtla.2022.101464]
[147]
Rbihi, S.; Laallam, L.; Sajieddine, M.; Jouaiti, A. Characterization and thermal conductivity of cellulose based composite xerogels. Heliyon, 2019, 5(5), e01704.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01704] [PMID: 31193198]
[148]
Medellin-Castillo, N.A.; Isaacs-Páez, E.D.; Giraldo-Gutierrez, L.; Moreno-Piraján, J.C.; Rodríguez-Méndez, I.; Reyes-López, S.Y.; Reyes-Hernández, J.; Segovia-Sandoval, S.J. Data for the synthesis, characterization, and use of xerogels as adsorbents for the removal of fluoride and bromide in aqueous phase. Data Brief, 2022, 42, 108138.
[http://dx.doi.org/10.1016/j.dib.2022.108138] [PMID: 35496485]
[149]
Berestok, T.; Guardia, P.; Estradé, S.; Llorca, J.; Peiró, F.; Cabot, A.; Brock, S. CuGaS2 and CuGaS2-ZnS porous layers from solution-processed nanocrystals. Nanomaterials (Basel), 2018, 8(4), 220.
[http://dx.doi.org/10.3390/nano8040220] [PMID: 29621198]
[150]
Liu, H.; Sha, W.; Cooper, A.T.; Fan, M. Preparation and characterization of a novel silica aerogel as adsorbent for toxic organic compounds. Colloids Surf. A Physicochem. Eng. Asp., 2009, 347(1-3), 38-44.
[http://dx.doi.org/10.1016/j.colsurfa.2008.11.033]
[151]
Pietras-Ożga, D.; Piątkowska-Sawczuk, K.; Duro, G.; Pawlak, B.; Stolyarchuk, N.; Tomina, V.; Melnyk, I.; Giannakoudakis, D.A.; Barczak, M. Sol-gel-derived silica xerogels: Synthesis, properties, and their applicability for removal of hazardous pollutants. Advanced Materials for Sustainable Environmental Remediation; Elsevier: Amsterdam, 2022, pp. 261-277.
[152]
Dabrowski, A.; Barczak, M. Bridged polysilsesquioxanes as a promising class of adsorbents. A concise review. Croat. Chem. Acta, 2007, 80, 367-380.
[153]
Cong, H.P.; Ren, X.C.; Wang, P.; Yu, S.H. Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano, 2012, 6(3), 2693-2703.
[http://dx.doi.org/10.1021/nn300082k] [PMID: 22303866]
[154]
Wei, T.Y.; Chen, C.H.; Chang, K.H.; Lu, S.Y.; Hu, C.C. Cobalt oxide aerogels of ideal supercapacitive properties prepared with an epoxide synthetic route. Chem. Mater., 2009, 21(14), 3228-3233.
[http://dx.doi.org/10.1021/cm9007365]
[155]
Casula, M.F.; Corrias, A.; Paschina, G. Preparation of Aerogel and Xerogel Nanocomposite Materials. 1999. Available From: https://www.cambridge.org/core/journals/mrs-online-proceedings-library-archive/article/abs/preparation-of-aerogel-and-xerogel-nanocomposite-materials/1E894376DF57F2E9128FCBC1487BB7D9
[156]
Bakierska, M.; Chojnacka, A.; Świętosławski, M.; Natkański, P.; Gajewska, M.; Rutkowska, M.; Molenda, M. Multifunctional carbon aerogels derived by sol-gel process of natural polysaccharides of different botanical origin. Materials (Basel), 2017, 10(11), 1336.
[http://dx.doi.org/10.3390/ma10111336] [PMID: 29160847]
[157]
Pekala, R.W.; Alviso, C.T. Carbon aerogels and xerogels. Proc. MRS, 1992, 270, 3-14.
[http://dx.doi.org/10.1557/PROC-270-3]
[158]
Alwin, S.; Sahaya, S.X. Aerogels: Promising nanostructured materials for energy conversion and storage applications. Mater. Renew. Sustain. Energy, 2020, 9(2), 7.
[http://dx.doi.org/10.1007/s40243-020-00168-4]
[159]
Bhagat, S.D.; Rao, A.V. Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid-base) sol-gel process. Appl. Surf. Sci., 2006, 252(12), 4289-4297.
[http://dx.doi.org/10.1016/j.apsusc.2005.07.006]
[160]
Li, Z.; Cheng, X.; He, S.; Shi, X.; Yang, H.; Zhang, H. Tailoring thermal properties of ambient pressure dried MTMS/TEOS co-precursor aerogels. Mater. Lett., 2016, 171, 91-94.
[http://dx.doi.org/10.1016/j.matlet.2016.02.025]
[161]
Pan, Y.; He, S.; Gong, L.; Cheng, X.; Li, C.; Li, Z.; Liu, Z.; Zhang, H. Low thermal-conductivity and high thermal stable silica aerogel based on MTMS/Water-glass co-precursor prepared by freeze drying. Mater. Des., 2017, 113, 246-253.
[http://dx.doi.org/10.1016/j.matdes.2016.09.083]
[162]
Segovia-Sandoval, S.J.; Pastrana-Martínez, L.M.; Ocampo-Pérez, R.; Morales-Torres, S.; Berber-Mendoza, M.S.; Carrasco-Marín, F. Synthesis and characterization of carbon xerogel/graphene hybrids as adsorbents for metronidazole pharmaceutical removal: Effect of operating parameters. Separ. Purif. Tech., 2020, 237, 116341.
[http://dx.doi.org/10.1016/j.seppur.2019.116341]
[163]
do Carmo Batista, W.V.F.; da Cunha, R.; dos Santos, A.C.; dos Reis, P.M.; Furtado, C.A.; Silva, M.C.; de Fátima Gorgulho, H. Synthesis of a reusable magnetic photocatalyst based on carbon xerogel/TiO2 composites and its application on acetaminophen degradation. Ceram. Int., 2022, 48(23), 34395-34404.
[http://dx.doi.org/10.1016/j.ceramint.2022.08.018]
[164]
Pierre, A.C.; Pajonk, G.M. Chemistry of aerogels and their applications. Chem. Rev., 2002, 102(11), 4243-4266.
[http://dx.doi.org/10.1021/cr0101306] [PMID: 12428989]
[165]
Maleki, H.; Durães, L.; Portugal, A. An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J. Non-Cryst. Solids, 2014, 385, 55-74.
[http://dx.doi.org/10.1016/j.jnoncrysol.2013.10.017]
[166]
Maleki, H.; Hüsing, N. Current status, opportunities and challenges in catalytic and photocatalytic applications of aerogels: Environmental protection aspects. Appl. Catal. B, 2018, 221, 530-555.
[http://dx.doi.org/10.1016/j.apcatb.2017.08.012]
[167]
Aegerter, M.A.; Leventis, N.; Koebel, M. Advances in sol-gel derived materials and technologies. In: Aerogels Handbook; Springer: New York, NY, USA, 2011.
[168]
Lamy-Mendes, A.; Silva, R.F.; Durães, L. Advances in carbon nanostructure-silica aerogel composites: A review. J. Mater. Chem. A Mater. Energy Sustain., 2018, 6(4), 1340-1369.
[http://dx.doi.org/10.1039/C7TA08959G]
[169]
Estella, J.; Echeverría, J.C.; Laguna, M.; Garrido, J.J. Effects of aging and drying conditions on the structural and textural properties of silica gels. Microporous Mesoporous Mater., 2007, 102(1-3), 274-282.
[http://dx.doi.org/10.1016/j.micromeso.2007.01.007]
[170]
Barım, Ş.B.; Bayrakçeken, A.; Bozbağ, S.E.; Zhang, L.; Kızılel, R.; Aindow, M.; Erkey, C. Control of average particle size of carbon aerogel supported platinum nanoparticles by supercritical deposition. Microporous Mesoporous Mater., 2017, 245, 94-103.
[http://dx.doi.org/10.1016/j.micromeso.2017.01.037]
[171]
Girgis, B.S.; Attia, A.A.; Fathy, N.A. Potential of nano-carbon xerogels in the remediation of dye-contaminated water discharges. Desalination, 2011, 265(1-3), 169-176.
[http://dx.doi.org/10.1016/j.desal.2010.07.048]
[172]
Manzocco, L.; Plazzotta, S.; Powell, J.; de Vries, A.; Rousseau, D.; Calligaris, S. Structural characterisation and sorption capability of whey protein aerogels obtained by freeze-drying or supercritical drying. Food Hydrocoll., 2022, 122, 107117.
[http://dx.doi.org/10.1016/j.foodhyd.2021.107117]
[173]
Wang, Z.; Liu, F.; Wei, W.; Dong, C.; Li, Z.; Liu, Z. Influence of supercritical fluid parameters on the polyimide aerogels in a high-efficiency supercritical drying process. Polymer (Guildf.), 2023, 268, 125713.
[http://dx.doi.org/10.1016/j.polymer.2023.125713]
[174]
Placin, F.; Desvergne, J.P.; Cansell, F. Organic low molecular weight aerogel formed in supercritical fluids. J. Mater. Chem., 2000, 10(9), 2147-2149.
[http://dx.doi.org/10.1039/b001714k]
[175]
Abdullah, Y. Recent advances in self-assembly behaviors of prolamins and their applications as functional delivery vehicles. Crit. Rev. Food Sci. Nutr., 2022, 2022, 1-23.
[http://dx.doi.org/10.1080/10408398.2022.2113031] [PMID: 36004584]
[176]
Mahinpey, N.; Karami, D. The preparation of zirconia-stabilized calcium oxide nanoparticles using supercritical drying technique for calcium looping process. Catal. Today, 2022, 404, 237-243.
[http://dx.doi.org/10.1016/j.cattod.2022.03.020]
[177]
Straumal, E.A.; Gozhikova, I.O.; Kottsov, S.Y.; Lermontov, S.A. Effect of sol concentration on properties of alumina aerogels. Russ. J. Inorg. Chem., 2022, 67(10), 1646-1651.
[http://dx.doi.org/10.1134/S003602362260071X]
[178]
Ul Haq, E.; Zaidi, S.F.A.; Zubair, M.; Abdul Karim, M.R.; Padmanabhan, S.K.; Licciulli, A. Hydrophobic silica aerogel glass-fibre composite with higher strength and thermal insulation based on methyltrimethoxysilane (MTMS) precursor. Energy Build., 2017, 151, 494-500.
[http://dx.doi.org/10.1016/j.enbuild.2017.07.003]
[179]
Tamon, H.; Ishizaka, H.; Yamamoto, T.; Suzuki, T. Freeze drying for preparation of aerogel-like carbon. Dry. Technol., 2001, 19(2), 313-324.
[http://dx.doi.org/10.1081/DRT-100102906]
[180]
Mi, H.Y.; Jing, X.; Politowicz, A.L.; Chen, E.; Huang, H.X.; Turng, L.S. Highly compressible ultra-light anisotropic cellulose/graphene aerogel fabricated by bidirectional freeze drying for selective oil absorption. Carbon, 2018, 132, 199-209.
[http://dx.doi.org/10.1016/j.carbon.2018.02.033]
[181]
Brinker, C.J.; Scherer, G.W. Sol-gel science: The physics and chemistry of sol-gel processing; Academic press: Cambridge, Massachusetts, 2013.
[182]
Maleki, H.; Hüsing, N. Aerogels as promising materials for environmental remediation—A broad insight into the environmental pollutants removal through adsorption and (photo)catalytic processes. New polymer nanocomposites for environmental remediation; Elsevier: Amsterdam, 2018, pp. 389-436.
[183]
Guo, X.; Shan, J.; Lei, W.; Ding, R.; Zhang, Y.; Yang, H. Facile synthesis of methylsilsesquioxane aerogels with uniform mesopores by microwave drying. Polymers (Basel), 2019, 11(2), 375.
[http://dx.doi.org/10.3390/polym11020375] [PMID: 30960359]
[184]
Zhang, X.; Chen, Z.; Zhang, J.; Ye, X.; Cui, S. Hydrophobic silica aerogels prepared by microwave irradiation. Chem. Phys. Lett., 2021, 762, 138127.
[http://dx.doi.org/10.1016/j.cplett.2020.138127]
[185]
Vartanyan, M.; Voytovich, I.; Gorbunova, I.; Makarov, N. Preparation and structural characterization of complex oxide eutectic precursors from polymer-salt xerogels Obtained by microwave-assisted drying. Materials (Basel), 2020, 13(8), 1808.
[http://dx.doi.org/10.3390/ma13081808] [PMID: 32290452]
[186]
Chen, D.; Gao, H.; Jin, Z.; Wang, J.; Dong, W.; Huang, X.; Wang, G. Vacuum-dried synthesis of low-density hydrophobic monolithic bridged silsesquioxane aerogels for oil/water separation: Effects of acid catalyst and its excellent flexibility. ACS Appl. Nano Mater., 2018, 1(2), 933-939.
[http://dx.doi.org/10.1021/acsanm.7b00328]
[187]
Fan, J.; Li, H.; Tang, S.; Li, B.; Xin, Y.; Hsieh, Y.L.; Zhou, J. Compensation strategy for constructing high-performance aerogels using acrylamide-assisted vacuum drying and their use as water-induced electrical generators. Chem. Eng. J., 2023, 452, 139685.
[http://dx.doi.org/10.1016/j.cej.2022.139685]
[188]
Smirnova, I.; Gurikov, P. Aerogels in chemical engineering: Strategies toward tailor-made aerogels. Annu. Rev. Chem. Biomol. Eng., 2017, 8(1), 307-334.
[http://dx.doi.org/10.1146/annurev-chembioeng-060816-101458] [PMID: 28375771]
[189]
Ciftci, D.; Ubeyitogullari, A.; Huerta, R.R.; Ciftci, O.N.; Flores, R.A.; Saldaña, M.D.A. Lupin hull cellulose nanofiber aerogel preparation by supercritical CO2 and freeze drying. J. Supercrit. Fluids, 2017, 127, 137-145.
[http://dx.doi.org/10.1016/j.supflu.2017.04.002]
[190]
Şahin, İ.; Özbakır, Y.; İnönü, Z.; Ulker, Z.; Erkey, C. Kinetics of supercritical drying of gels. Gels, 2017, 4(1), 3.
[http://dx.doi.org/10.3390/gels4010003] [PMID: 30674780]
[191]
Maleki, H. Recent advances in aerogels for environmental remediation applications: A review. Chem. Eng. J., 2016, 300, 98-118.
[http://dx.doi.org/10.1016/j.cej.2016.04.098]
[192]
Saravanan, K.; Tyagi, B.; Bajaj, H.C. Nano-crystalline, mesoporous aerogel sulfated zirconia as an efficient catalyst for esterification of stearic acid with methanol. Appl. Catal. B, 2016, 192, 161-170.
[http://dx.doi.org/10.1016/j.apcatb.2016.03.037]
[193]
Namvar, M.; Mahinroosta, M.; Allahverdi, A.; Mohammadzadeh, K. Preparation of monolithic amorphous silica aerogel through promising valorization of silicomanganese slag. J. Non-Cryst. Solids, 2022, 586, 121561.
[http://dx.doi.org/10.1016/j.jnoncrysol.2022.121561]
[194]
García-González, C.A.; Camino-Rey, M.C.; Alnaief, M.; Zetzl, C.; Smirnova, I. Supercritical drying of aerogels using CO2: Effect of extraction time on the end material textural properties. J. Supercrit. Fluids, 2012, 66, 297-306.
[http://dx.doi.org/10.1016/j.supflu.2012.02.026]
[195]
Ganesan, K.; Budtova, T.; Ratke, L.; Gurikov, P.; Baudron, V.; Preibisch, I.; Niemeyer, P.; Smirnova, I.; Milow, B. Review on the production of polysaccharide aerogel particles. Materials (Basel), 2018, 11(11), 2144.
[http://dx.doi.org/10.3390/ma11112144] [PMID: 30384442]
[196]
Thomas, S.; Pothan, L.A.; Mavelil-Sam, R. Biobased aerogels: Polysaccharide and protein-based materials.Biobased Aerogels; Royal Society of Chemistry: Piccadilly, London, 2018.
[http://dx.doi.org/10.1039/9781782629979]
[197]
Rey-Raap, N.; Arenillas, A.; Menéndez, J. Carbon gels and their applications: A review of patents. Submicron Porous Materials; Springer: Cham, 2017.
[198]
Jiang, H.; Zhang, M.; Mujumdar, A.S.; Lim, R.X. Comparison of drying characteristic and uniformity of banana cubes dried by pulse-spouted microwave vacuum drying, freeze drying and microwave freeze drying. J. Sci. Food Agric., 2014, 94(9), 1827-1834.
[http://dx.doi.org/10.1002/jsfa.6501] [PMID: 24526431]
[199]
Cheng, X.; Zhang, Y. Preparation of silica aerogels via ambient pressure drying. Huaxue Jinzhan, 2010, 22, 1892.
[200]
Zuo, L.; Zhang, Y.; Zhang, L.; Miao, Y.E.; Fan, W.; Liu, T. Polymer/carbon-based hybrid aerogels: Preparation, properties and applications. Materials (Basel), 2015, 8(10), 6806-6848.
[http://dx.doi.org/10.3390/ma8105343] [PMID: 28793602]
[201]
Schwan, M.; Ratke, L. Flexibilisation of resorcinol-formaldehyde aerogels. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(43), 13462-13468.
[http://dx.doi.org/10.1039/c3ta13172f]
[202]
Wu, D.; Fu, R.; Zhang, S.; Dresselhaus, M.S.; Dresselhaus, G. Preparation of low-density carbon aerogels by ambient pressure drying. Carbon, 2004, 42(10), 2033-2039.
[http://dx.doi.org/10.1016/j.carbon.2004.04.003]
[203]
Noroozi, M.; Panahi-Sarmad, M.; Abrisham, M.; Amirkiai, A.; Asghari, N.; Golbaten-Mofrad, H.; Karimpour-Motlagh, N.; Goodarzi, V.; Bahramian, A.R.; Zahiri, B. Nanostructure of aerogels and their applications in thermal energy insulation. ACS Appl. Energy Mater., 2019, 2(8), 5319-5349.
[http://dx.doi.org/10.1021/acsaem.9b01157]
[204]
Kim, H.W.; Koh, Y.H.; Li, L.H.; Lee, S.; Kim, H.E. Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method. Biomaterials, 2004, 25(13), 2533-2538.
[http://dx.doi.org/10.1016/j.biomaterials.2003.09.041] [PMID: 14751738]
[205]
Koç, F.; Çok, S.S.; Gizli, N.; Koc, F.; Sert Cok, S.; Gizli, N. Tuning the properties of silica aerogels through pH controlled sol-gel processes. Res. Eng. Struc. Mater., 2020, 6, 257-269.
[206]
Soleimani Dorcheh, A.; Abbasi, M.H. Silica aerogel; synthesis, properties and characterization. J. Mater. Process. Technol., 2008, 199(1-3), 10-26.
[http://dx.doi.org/10.1016/j.jmatprotec.2007.10.060]
[207]
Ögmundarson, Ó.; Herrgård, M.J.; Forster, J.; Hauschild, M.Z.; Fantke, P. Addressing environmental sustainability of biochemicals. Nat. Sustain., 2020, 3(3), 167-174.
[http://dx.doi.org/10.1038/s41893-019-0442-8]
[208]
Anastas, P.; Eghbali, N. Green chemistry: Principles and practice. Chem. Soc. Rev., 2010, 39(1), 301-312.
[http://dx.doi.org/10.1039/B918763B] [PMID: 20023854]
[209]
Rahardja, M.R.; Kurniawan, D.; Chiang, W.H. Microplasma-enabled sustainable synthesis of nitrogen-doped graphene quantum dots for sensitive detection of 4-nitrophenol. Chemosensors (Basel), 2023, 11(7), 390.
[http://dx.doi.org/10.3390/chemosensors11070390]
[210]
Ubeyitogullari, A.; Ciftci, O.N. Formation of nanoporous aerogels from wheat starch. Carbohydr. Polym., 2016, 147, 125-132.
[http://dx.doi.org/10.1016/j.carbpol.2016.03.086] [PMID: 27178916]
[211]
Gao, G.M.; Liu, D.R.; Zou, H.F.; Zou, L.C.; Gan, S.C. Preparation of silica aerogel from oil shale ash by fluidized bed drying. Powder Technol., 2010, 197(3), 283-287.
[http://dx.doi.org/10.1016/j.powtec.2009.10.005]
[212]
Hu, W.; Li, M.; Chen, W.; Zhang, N.; Li, B.; Wang, M.; Zhao, Z. Preparation of hydrophobic silica aerogel with kaolin dried at ambient pressure. Colloids Surf. A Physicochem. Eng. Asp., 2016, 501, 83-91.
[http://dx.doi.org/10.1016/j.colsurfa.2016.04.059]
[213]
Shi, F.; Liu, J.X.; Song, K.; Wang, Z.Y. Cost-effective synthesis of silica aerogels from fly ash via ambient pressure drying. J. Non-Cryst. Solids, 2010, 356(43), 2241-2246.
[http://dx.doi.org/10.1016/j.jnoncrysol.2010.08.005]
[214]
Karamahmut Mermer, N.; Sari Yilmaz, M.; Dere Ozdemir, O.; Piskin, M.B. The synthesis of silica-based aerogel from gold mine waste for thermal insulation. J. Therm. Anal. Calorim., 2017, 129(3), 1807-1812.
[http://dx.doi.org/10.1007/s10973-017-6371-8]
[215]
Sudiana, I.; Mitsudo, S.; Nishiwaki, T.; Susilowati, P.; Lestari, L.; Firihu, M.; Aripin, H. Synthesis and characterization of microwave sintered silica xerogel produced from rice husk ash. J. Phys.: Conf. Ser., 2016, 739(1), 012059.
[216]
El Hamzaoui, H.; Courthéoux, L.; Nguyen, V.N.; Berrier, E.; Favre, A.; Bigot, L.; Bouazaoui, M.; Capoen, B. From porous silica xerogels to bulk optical glasses: The control of densification. Mater. Chem. Phys., 2010, 121(1-2), 83-88.
[http://dx.doi.org/10.1016/j.matchemphys.2009.12.043]
[217]
Aripin, H.; Mitsudo, S.; Sudiana, I.N.; Tani, S.; Sako, K.; Fujii, Y.; Saito, T.; Idehara, T.; Sabchevski, S. Rapid sintering of silica xerogel ceramic derived from sago waste ash using sub-millimeter wave heating with a 300 GHz CW gyrotron. J. Infrared Millim. Terahertz Waves, 2011, 32(6), 867-876.
[http://dx.doi.org/10.1007/s10762-011-9797-2]
[218]
Guzel K, G.; Yilmaz, E.; Deveci, H. Sustainable nanocomposites of epoxy and silica xerogel synthesized from corn stalk ash: Enhanced thermal and acoustic insulation performance. Compos., Part B Eng., 2018, 150, 1-6.
[http://dx.doi.org/10.1016/j.compositesb.2018.05.039]
[219]
Guzel Kaya, G.; Yilmaz, E.; Deveci, H. A novel silica xerogel synthesized from volcanic tuff as an adsorbent for high‐efficient removal of methylene blue: Parameter optimization using Taguchi experimental design. J. Chem. Technol. Biotechnol., 2019, 94(8), 2729-2737.
[http://dx.doi.org/10.1002/jctb.6089]
[220]
Zanotti, K.; Igal, K.; Colombo Migliorero, M.B.; Gomes Zuin, V.; Vázquez, P.G. Synthesis of silica-based materials using bioresidues through the sol-gel technique. Sustainable Chemistry, 2021, 2(4), 670-685.
[http://dx.doi.org/10.3390/suschem2040037]
[221]
Arabkhani, P.; Asfaram, A. The potential application of bio-based ceramic/organic xerogel derived from the plant sources: A new green adsorbent for removal of antibiotics from pharmaceutical wastewater. J. Hazard. Mater., 2022, 429, 128289.
[http://dx.doi.org/10.1016/j.jhazmat.2022.128289] [PMID: 35121292]
[222]
Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem., 2005, 15(35-36), 3559-3592.
[http://dx.doi.org/10.1039/b509097k]
[223]
Shchipunov, Y.A.; Burtseva, Y.V.; Karpenko, T.Y.; Shevchenko, N.M.; Zvyagintseva, T.N. Highly efficient immobilization of endo-1,3-β-d-glucanases (laminarinases) from marine mollusks in novel hybrid polysaccharide-silica nanocomposites with regulated composition. J. Mol. Catal., B Enzym., 2006, 40(1-2), 16-23.
[http://dx.doi.org/10.1016/j.molcatb.2006.02.002]
[224]
Sequeira, S.; Evtuguin, D.V.; Portugal, I.; Esculcas, A.P. Synthesis and characterisation of cellulose/silica hybrids obtained by heteropoly acid catalysed sol-gel process. Mater. Sci. Eng. C, 2007, 27(1), 172-179.
[http://dx.doi.org/10.1016/j.msec.2006.04.007]
[225]
Coradin, T.; Livage, J. Synthesis and characterization of alginate/silica biocomposites. J. Sol-Gel Sci. Technol., 2003, 26(1/3), 1165-1168.
[http://dx.doi.org/10.1023/A:1020787514512]
[226]
Yeh, J.T.; Chen, C.L.; Huang, K.S. Synthesis and properties of chitosan/SiO2 hybrid materials. Mater. Lett., 2007, 61(6), 1292-1295.
[http://dx.doi.org/10.1016/j.matlet.2006.07.016]
[227]
Singh, V.; Singh, S.K. Synthesis and characterization of gum acacia inspired silica hybrid xerogels for mercury(II) adsorption. Int. J. Biol. Macromol., 2011, 48(3), 445-451.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.01.001] [PMID: 21238481]
[228]
Feng, Z.; Shao, Z.; Yao, J.; Huang, Y.; Chen, X. Protein adsorption and separation with chitosan-based amphoteric membranes. Polymer (Guildf.), 2009, 50(5), 1257-1263.
[http://dx.doi.org/10.1016/j.polymer.2008.12.046]
[229]
Zeng, B.; Wang, X.; Byrne, N. Development of cellulose based aerogel utilizing waste denim—A Morphology study. Carbohydr. Polym., 2019, 205, 1-7.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.070] [PMID: 30446084]
[230]
Horvat, G.; Fajfar, T.; Perva Uzunalić, A.; Knez, Ž.; Novak, Z. Thermal properties of polysaccharide aerogels. J. Therm. Anal. Calorim., 2017, 127(1), 363-370.
[http://dx.doi.org/10.1007/s10973-016-5814-y]
[231]
Li, X.L.; Chen, M.J.; Chen, H.B. Facile fabrication of mechanically-strong and flame retardant alginate/clay aerogels. Compos., Part B Eng., 2019, 164, 18-25.
[http://dx.doi.org/10.1016/j.compositesb.2018.11.055]
[232]
El-Naggar, M.E.; Abdelgawad, A.M.; Salas, C.; Rojas, O.J. Curdlan in fibers as carriers of tetracycline hydrochloride: Controlled release and antibacterial activity. Carbohydr. Polym., 2016, 154, 194-203.
[http://dx.doi.org/10.1016/j.carbpol.2016.08.042] [PMID: 27577910]
[233]
Alnaief, M.; Obaidat, R.; Mashaqbeh, H. Effect of processing parameters on preparation of carrageenan aerogel microparticles. Carbohydr. Polym., 2018, 180, 264-275.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.038] [PMID: 29103505]
[234]
Chang, X.; Chen, D.; Jiao, X. Starch-derived carbon aerogels with high-performance for sorption of cationic dyes. Polymer (Guildf.), 2010, 51(16), 3801-3807.
[http://dx.doi.org/10.1016/j.polymer.2010.06.018]
[235]
Bakierska, M.; Molenda, M.; Majda, D.; Dziembaj, R. Functional starch based carbon aerogels for energy applications. Procedia Eng., 2014, 98, 14-19.
[http://dx.doi.org/10.1016/j.proeng.2014.12.481]
[236]
Bilanovic, D.; Starosvetsky, J.; Armon, R.H. Preparation of biodegradable xanthan-glycerol hydrogel, foam, film, aerogel and xerogel at room temperature. Carbohydr. Polym., 2016, 148, 243-250.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.058] [PMID: 27185137]
[237]
Amaral-Labat, G.; Grishechko, L.I.; Fierro, V.; Kuznetsov, B.N.; Pizzi, A.; Celzard, A. Tannin-based xerogels with distinctive porous structures. Biomass Bioenergy, 2013, 56, 437-445.
[http://dx.doi.org/10.1016/j.biombioe.2013.06.001]
[238]
Amaral-Labat, G.; Munhoz, M.G.C.; Fonseca, B.C.S.; Boss, A.F.N.; de Almeida-Mattos, P.; Braghiroli, F.L.; Bouafif, H.; Koubaa, A.; Lenz e Silva, G.F.B.; Baldan, M.R. Xerogel-like materials from sustainable sources: Properties and electrochemical performances. Energies, 2021, 14(23), 7977.
[http://dx.doi.org/10.3390/en14237977]
[239]
Yucel, T.; Lovett, M.L.; Kaplan, D.L. Silk-based biomaterials for sustained drug delivery. J. Control. Release, 2014, 190, 381-397.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.059] [PMID: 24910193]
[240]
Križman, K.; Novak, S.; Kristl, J.; Majdič, G.; Drnovšek, N. Long-acting silk fibroin xerogel delivery systems for controlled release of estradiol. J. Drug Deliv. Sci. Technol., 2021, 65, 102701.
[http://dx.doi.org/10.1016/j.jddst.2021.102701]
[241]
El-Naggar, M.E.; Radwan, E.K.; El-Wakeel, S.T.; Kafafy, H.; Gad-Allah, T.A.; El-Kalliny, A.S.; Shaheen, T.I. Synthesis, characterization and adsorption properties of microcrystalline cellulose based nanogel for dyes and heavy metals removal. Int. J. Biol. Macromol., 2018, 113, 248-258.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.126] [PMID: 29476854]
[242]
Wang, Y.; Su, Y.; Wang, W.; Fang, Y.; Riffat, S.B.; Jiang, F. The advances of polysaccharide-based aerogels: Preparation and potential application. Carbohydr. Polym., 2019, 226, 115242.
[http://dx.doi.org/10.1016/j.carbpol.2019.115242] [PMID: 31582065]
[243]
Mikkonen, K.S.; Parikka, K.; Ghafar, A.; Tenkanen, M. Prospects of polysaccharide aerogels as modern advanced food materials. Trends Food Sci. Technol., 2013, 34(2), 124-136.
[http://dx.doi.org/10.1016/j.tifs.2013.10.003]
[244]
Vareda, J.P.; García-González, C.A.; Valente, A.J.; Simón-Vázquez, R.; Stipetic, M.; Durães, L. Insights on toxicity, safe handling and disposal of silica aerogels and amorphous nanoparticles, Environmental Science. Nano, 2021, 8, 1177-1195.
[245]
Fu, Y.; Guo, Z. Natural polysaccharide-based aerogels and their applications in oil-water separations: A review. J. Mater. Chem. A Mater. Energy Sustain., 2022, 10(15), 8129-8158.
[http://dx.doi.org/10.1039/D2TA00708H]
[246]
Liu, Y.; Liu, J.; Song, P. Recent advances in polysaccharide-based carbon aerogels for environmental remediation and sustainable energy. Sustain. Mater. Technol., 2021, 27, e00240.
[http://dx.doi.org/10.1016/j.susmat.2020.e00240]
[247]
Saya, L.; Gautam, D.; Malik, V.; Singh, W.R.; Hooda, S. Natural polysaccharide based graphene oxide nanocomposites for removal of dyes from wastewater: A review. J. Chem. Eng. Data, 2021, 66(1), 11-37.
[http://dx.doi.org/10.1021/acs.jced.0c00743]
[248]
James, A.; Yadav, D. Bioaerogels, the emerging technology for wastewater treatment: A comprehensive review on synthesis, properties and applications. Environ. Res., 2022, 212(Pt A), 113222.
[http://dx.doi.org/10.1016/j.envres.2022.113222] [PMID: 35398081]
[249]
Nguyen, H.S.H.; Huynh, H.K.P.; Nguyen, S.T.; Nguyen, V.T.T.; Nguyen, T.A.; Phan, A.N. Insights into sustainable aerogels from lignocellulosic materials. J. Mater. Chem. A Mater. Energy Sustain., 2022, 10(44), 23467-23482.
[http://dx.doi.org/10.1039/D2TA04994E]
[250]
Rasee, A.I.; Awual, E.; Rehan, A.I.; Hossain, M.S.; Waliullah, R.M.; Kubra, K.T.; Sheikh, M.C.; Salman, M.S.; Hasan, M.N.; Hasan, M.M.; Marwani, H.M.; Islam, A.; Khaleque, M.A.; Awual, M.R. Efficient separation, adsorption, and recovery of Samarium(III) ions using novel ligand-based composite adsorbent. Surf. Interfaces, 2023, 41, 103276.
[http://dx.doi.org/10.1016/j.surfin.2023.103276]
[251]
Hasanpour, M.; Hatami, M. Application of three dimensional porous aerogels as adsorbent for removal of heavy metal ions from water/wastewater: A review study. Adv. Colloid Interface Sci., 2020, 284, 102247.
[http://dx.doi.org/10.1016/j.cis.2020.102247] [PMID: 32916456]
[252]
Rajasulochana, P.; Preethy, V. Comparison on efficiency of various techniques in treatment of waste and sewage water - A comprehensive review. Resource-Efficient Technologies, 2016, 2(4), 175-184.
[http://dx.doi.org/10.1016/j.reffit.2016.09.004]
[253]
Lakherwal, D. Adsorption of heavy metals: A review. Int. J. Environ. Res. Dev., 2014, 4, 41-48.
[254]
Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and interpretation of adsorption isotherms. J. Chem., 2017, 2017.
[255]
Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J., 2010, 156(1), 2-10.
[http://dx.doi.org/10.1016/j.cej.2009.09.013]
[256]
Li, J.; Wang, Q.; Zheng, L.; Liu, H. A novel graphene aerogel synthesized from cellulose with high performance for removing MB in water. J. Mater. Sci. Technol., 2020, 41, 68-75.
[http://dx.doi.org/10.1016/j.jmst.2019.09.019]
[257]
Li, Z.; Jia, Z.; Ni, T.; Li, S. Adsorption of methylene blue on natural cotton based flexible carbon fiber aerogels activated by novel air-limited carbonization method. J. Mol. Liq., 2017, 242, 747-756.
[http://dx.doi.org/10.1016/j.molliq.2017.07.062]
[258]
Sánchez-Polo, M.; Rivera-Utrilla, J.; Salhi, E.; von Gunten, U. Ag-doped carbon aerogels for removing halide ions in water treatment. Water Res., 2007, 41(5), 1031-1037.
[http://dx.doi.org/10.1016/j.watres.2006.07.009] [PMID: 16970974]
[259]
Wang, L.; Cheng, J.; Kang, Q.; Wang, R.; Ruan, J.; Li, L.; Wu, L.; Li, Z.; Ai, N. Cobalt-containing nanoparticles embedded in flexible carbon aerogel for spilled oil cleanup and oxygen reduction reaction. Compos., Part B Eng., 2019, 174, 107039.
[http://dx.doi.org/10.1016/j.compositesb.2019.107039]
[260]
Xiao, J.; Lv, W.; Song, Y.; Zheng, Q. Graphene/nanofiber aerogels: Performance regulation towards multiple applications in dye adsorption and oil/water separation. Chem. Eng. J., 2018, 338, 202-210.
[http://dx.doi.org/10.1016/j.cej.2017.12.156]
[261]
Song, Y.; Li, H.; Gao, Y.; Yue, Q.; Gao, B.; Kong, W.; Zang, Y.; Jiang, W. Grass-modified graphene aerogel for effective oil-water separation. Process Saf. Environ. Prot., 2019, 129, 119-129.
[http://dx.doi.org/10.1016/j.psep.2019.06.018]
[262]
Wei, X.; Huang, T.; Yang, J.; Zhang, N.; Wang, Y.; Zhou, Z. Green synthesis of hybrid graphene oxide/microcrystalline cellulose aerogels and their use as superabsorbents. J. Hazard. Mater., 2017, 335, 28-38.
[http://dx.doi.org/10.1016/j.jhazmat.2017.04.030] [PMID: 28414946]
[263]
Dai, J.; Huang, T.; Tian, S.; Xiao, Y.; Yang, J.; Zhang, N.; Wang, Y.; Zhou, Z. High structure stability and outstanding adsorption performance of graphene oxide aerogel supported by polyvinyl alcohol for waste water treatment. Mater. Des., 2016, 107, 187-197.
[http://dx.doi.org/10.1016/j.matdes.2016.06.039]
[264]
Ren, H.; Shi, X.; Zhu, J.; Zhang, Y.; Bi, Y.; Zhang, L. Facile synthesis of N-doped graphene aerogel and its application for organic solvent adsorption. J. Mater. Sci., 2016, 51(13), 6419-6427.
[http://dx.doi.org/10.1007/s10853-016-9939-y]
[265]
Xiao, J.; Zhang, J.; Lv, W.; Song, Y.; Zheng, Q. Multifunctional graphene/poly(vinyl alcohol) aerogels: In situ hydrothermal preparation and applications in broad-spectrum adsorption for dyes and oils. Carbon, 2017, 123, 354-363.
[http://dx.doi.org/10.1016/j.carbon.2017.07.049]
[266]
Zhang, Y.; Li, K.; Liao, J. Facile synthesis of reduced-grapheneoxide/rare-earth-metal-oxide aerogels as a highly efficient adsorbent for Rhodamine-B. Appl. Surf. Sci., 2020, 504, 144377.
[http://dx.doi.org/10.1016/j.apsusc.2019.144377]
[267]
Li, K.; Zhou, M.; Liang, L.; Jiang, L.; Wang, W. Ultrahigh-surface-area activated carbon aerogels derived from glucose for high-performance organic pollutants adsorption. J. Colloid Interface Sci., 2019, 546, 333-343.
[http://dx.doi.org/10.1016/j.jcis.2019.03.076] [PMID: 30927597]
[268]
Sun, X.; Ji, S.; Wang, M.; Dou, J.; Yang, Z.; Qiu, H.; Kou, S.; Ji, Y.; Wang, H. Fabrication of porous TiO2-RGO hybrid aerogel for high-efficiency, visible-light photodegradation of dyes. J. Alloys Compd., 2020, 819, 153033.
[http://dx.doi.org/10.1016/j.jallcom.2019.153033]
[269]
Huang, J.; Liu, H.; Chen, S.; Ding, C. Hierarchical porous MWCNTs-silica aerogel synthesis for high-efficiency oily water treatment. J. Environ. Chem. Eng., 2016, 4(3), 3274-3282.
[http://dx.doi.org/10.1016/j.jece.2016.06.039]
[270]
Thakkar, S.V.; Pinna, A.; Carbonaro, C.M.; Malfatti, L.; Guardia, P.; Cabot, A.; Casula, M.F. Performance of oil sorbents based on reduced graphene oxide-silica composite aerogels. J. Environ. Chem. Eng., 2020, 8(1), 103632.
[http://dx.doi.org/10.1016/j.jece.2019.103632]
[271]
Liu, Q.; Li, S.; Yu, H.; Zeng, F.; Li, X.; Su, Z. Covalently crosslinked zirconium-based metal-organic framework aerogel monolith with ultralow-density and highly efficient Pb(II) removal. J. Colloid Interface Sci., 2020, 561, 211-219.
[http://dx.doi.org/10.1016/j.jcis.2019.11.074] [PMID: 31816466]
[272]
Li, D.; Tian, X.; Wang, Z.; Guan, Z.; Li, X.; Qiao, H.; Ke, H.; Luo, L.; Wei, Q. Multifunctional adsorbent based on metal-organic framework modified bacterial cellulose/chitosan composite aerogel for high efficient removal of heavy metal ion and organic pollutant. Chem. Eng. J., 2020, 383, 123127.
[http://dx.doi.org/10.1016/j.cej.2019.123127]
[273]
Liu, H.; Li, P.; Zhang, T.; Zhu, Y.; Qiu, F. Fabrication of recyclable magnetic double-base aerogel with waste bioresource bagasse as the source of fiber for the enhanced removal of chromium ions from aqueous solution. Food Bioprod. Process., 2020, 119, 257-267.
[http://dx.doi.org/10.1016/j.fbp.2019.11.010]
[274]
Dai, J.; Tian, Q.; Sun, Q.; Wei, W.; Zhuang, J.; Liu, M.; Cao, Z.; Xie, W.; Fan, M. TiO2-alginate composite aerogels as novel oil/water separation and wastewater remediation filters. Compos., Part B Eng., 2019, 160, 480-487.
[http://dx.doi.org/10.1016/j.compositesb.2018.12.097]
[275]
Wang, Z.; Wu, S.; Zhang, Y.; Miao, L.; Zhang, Y.; Wu, A. Preparation of modified sodium alginate aerogel and its application in removing lead and cadmium ions in wastewater. Int. J. Biol. Macromol., 2020, 157, 687-694.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.11.228] [PMID: 31790735]
[276]
Cheng, H.; Gu, B.; Pennefather, M.P.; Nguyen, T.X.; Phan-Thien, N.; Duong, H.M. Cotton aerogels and cotton-cellulose aerogels from environmental waste for oil spillage cleanup. Mater. Des., 2017, 130, 452-458.
[http://dx.doi.org/10.1016/j.matdes.2017.05.082]
[277]
Wang, S.; Ma, X.; Zheng, P. Sulfo-functional 3D porous cellulose/graphene oxide composites for highly efficient removal of methylene blue and tetracycline from water. Int. J. Biol. Macromol., 2019, 140, 119-128.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.111] [PMID: 31419562]
[278]
Jiang, J.; Zhu, J.; Zhang, Q.; Zhan, X.; Chen, F. A shape recovery zwitterionic bacterial cellulose aerogel with superior performances for water remediation. Langmuir, 2019, 35(37), 11959-11967.
[http://dx.doi.org/10.1021/acs.langmuir.8b04180] [PMID: 30912432]
[279]
Gu, H.; Zhou, X.; Lyu, S.; Pan, D.; Dong, M.; Wu, S.; Ding, T.; Wei, X.; Seok, I.; Wei, S.; Guo, Z. Magnetic nanocellulose-magnetite aerogel for easy oil adsorption. J. Colloid Interface Sci., 2020, 560, 849-856.
[http://dx.doi.org/10.1016/j.jcis.2019.10.084] [PMID: 31708258]
[280]
Chhajed, M.; Yadav, C.; Agrawal, A.K.; Maji, P.K. Esterified superhydrophobic nanofibrillated cellulose based aerogel for oil spill treatment. Carbohydr. Polym., 2019, 226, 115286.
[http://dx.doi.org/10.1016/j.carbpol.2019.115286] [PMID: 31582050]
[281]
Jiang, F.; Hsieh, Y.L. Amphiphilic superabsorbent cellulose nanofibril aerogels. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(18), 6337-6342.
[http://dx.doi.org/10.1039/C4TA00743C]
[282]
Liu, H.; Wei, Y.; Luo, J.; Li, T.; Wang, D.; Luo, S.; Crittenden, J.C. 3D hierarchical porous-structured biochar aerogel for rapid and efficient phenicol antibiotics removal from water. Chem. Eng. J., 2019, 368, 639-648.
[http://dx.doi.org/10.1016/j.cej.2019.03.007]
[283]
Li, Y.; Guo, C.; Shi, R.; Zhang, H.; Gong, L.; Dai, L. Chitosan/nanofibrillated cellulose aerogel with highly oriented microchannel structure for rapid removal of Pb (II) ions from aqueous solution. Carbohydr. Polym., 2019, 223, 115048.
[http://dx.doi.org/10.1016/j.carbpol.2019.115048] [PMID: 31426974]
[284]
Yi, L.; Yang, J.; Fang, X.; Xia, Y.; Zhao, L.; Wu, H.; Guo, S. Facile fabrication of wood-inspired aerogel from chitosan for efficient removal of oil from Water. J. Hazard. Mater., 2020, 385, 121507.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121507] [PMID: 31690505]
[285]
Wang, X.L.; Guo, D.M.; An, Q.D.; Xiao, Z.Y.; Zhai, S.R. High-efficacy adsorption of Cr(VI) and anionic dyes onto β-cyclodextrin/chitosan/hexamethylenetetramine aerogel beads with task-specific, integrated components. Int. J. Biol. Macromol., 2019, 128, 268-278.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.01.139] [PMID: 30695726]
[286]
Lai, K.C.; Hiew, B.Y.Z.; Lee, L.Y.; Gan, S.; Thangalazhy-Gopakumar, S.; Chiu, W.S.; Khiew, P.S. Ice-templated graphene oxide/chitosan aerogel as an effective adsorbent for sequestration of metanil yellow dye. Bioresour. Technol., 2019, 274, 134-144.
[http://dx.doi.org/10.1016/j.biortech.2018.11.048] [PMID: 30502604]
[287]
Jiang, J.; Zhang, Q.; Zhan, X.; Chen, F. A multifunctional gelatin-based aerogel with superior pollutants adsorption, oil/water separation and photocatalytic properties. Chem. Eng. J., 2019, 358, 1539-1551.
[http://dx.doi.org/10.1016/j.cej.2018.10.144]
[288]
Tian, X.; Liu, J.; Wang, Y.; Shi, F.; Shan, Z.; Zhou, J.; Liu, J. Adsorption of antibiotics from aqueous solution by different aerogels. J. Non-Cryst. Solids, 2019, 505, 72-78.
[http://dx.doi.org/10.1016/j.jnoncrysol.2018.10.033]
[289]
Prasanna, V.L.; Mamane, H.; Vadivel, V.K.; Avisar, D. Ethanol-activated granular aerogel as efficient adsorbent for persistent organic pollutants from real leachate and hospital wastewater. J. Hazard. Mater., 2020, 384, 121396.
[http://dx.doi.org/10.1016/j.jhazmat.2019.121396] [PMID: 31610343]
[290]
Karatum, O.; Steiner, S.A., III; Griffin, J.S.; Shi, W.; Plata, D.L. Flexible, mechanically durable aerogel composites for oil capture and recovery. ACS Appl. Mater. Interfaces, 2016, 8(1), 215-224.
[http://dx.doi.org/10.1021/acsami.5b08439] [PMID: 26701744]
[291]
Wang, J.; Wang, H. Ultra-hydrophobic and mesoporous silica aerogel membranes for efficient separation of surfactant-stabilized water-in-oil emulsion separation. Separ. Purif. Tech., 2019, 212, 597-604.
[http://dx.doi.org/10.1016/j.seppur.2018.11.078]
[292]
Parale, V.G.; Kim, T.; Lee, K.Y.; Phadtare, V.D.; Dhavale, R.P.; Jung, H-N-R.; Park, H-H. Hydrophobic TiO2-SiO2 composite aerogels synthesized viain situ epoxy-ring opening polymerization and sol-gel process for enhanced degradation activity. Ceram. Int., 2020, 46(4), 4939-4946.
[http://dx.doi.org/10.1016/j.ceramint.2019.10.231]
[293]
Wang, K.; Liu, X.; Tan, Y.; Zhang, W.; Zhang, S.; Li, J. Two-dimensional membrane and three-dimensional bulk aerogel materials via top-down wood nanotechnology for multibehavioral and reusable oil/water separation. Chem. Eng. J., 2019, 371, 769-780.
[http://dx.doi.org/10.1016/j.cej.2019.04.108]
[294]
Zhang, S.; Liu, G.; Gao, Y.; Yue, Q.; Gao, B.; Xu, X.; Kong, W.; Li, N.; Jiang, W. A facile approach to ultralight and recyclable 3D self-assembled copolymer/graphene aerogels for efficient oil/water separation. Sci. Total Environ., 2019, 694, 133671.
[http://dx.doi.org/10.1016/j.scitotenv.2019.133671] [PMID: 31401508]
[295]
Zhang, R.; Wan, W.; Qiu, L.; Wang, Y.; Zhou, Y. Preparation of hydrophobic polyvinyl alcohol aerogel via the surface modification of boron nitride for environmental remediation. Appl. Surf. Sci., 2017, 419, 342-347.
[http://dx.doi.org/10.1016/j.apsusc.2017.05.044]
[296]
Cao, N.; Lyu, Q.; Li, J.; Wang, Y.; Yang, B.; Szunerits, S.; Boukherroub, R. Facile synthesis of fluorinated polydopamine/chitosan/reduced graphene oxide composite aerogel for efficient oil/water separation. Chem. Eng. J., 2017, 326, 17-28.
[http://dx.doi.org/10.1016/j.cej.2017.05.117]
[297]
Wang, X.; Wang, L.; Ma, S.; Tong, S. Ultrathin WS2 nanobowls-based hybrid aerogels for selective trapping of precious metals from electronic wastes and elimination of organic dyes. Chem. Eng. J., 2023, 451, 138539.
[http://dx.doi.org/10.1016/j.cej.2022.138539]
[298]
Guzel Kaya, G.; Aznar, E.; Deveci, H.; Martínez-Máñez, R. Low-cost silica xerogels as potential adsorbents for ciprofloxacin removal. Sustain. Chem. Pharm., 2021, 22, 100483.
[http://dx.doi.org/10.1016/j.scp.2021.100483]
[299]
Sriram, G.; Uthappa, U.T.; Kigga, M.; Jung, H.Y.; Altalhi, T.; Brahmkhatri, V.; Kurkuri, M.D. Xerogel activated diatoms as an effective hybrid adsorbent for the efficient removal of malachite green. New J. Chem., 2019, 43(9), 3810-3820.
[http://dx.doi.org/10.1039/C9NJ00015A]
[300]
Tasca, A.L.; Fletcher, A.J.; Ghajeri, F.; Alejandro, F.M.; Palomino, G.T. Organics adsorption on novel amorphous silica and silica xerogels: Microcolumn rapid breakthrough test coupled with sequential injection analysis. J. Porous Media, 2019, 22(8), 1001-1014.
[http://dx.doi.org/10.1615/JPorMedia.2019024612]
[301]
Yu, J.; Zhang, X.; Jin, B.; Chen, J.; Huang, Y.; Wang, Z. Silica aluminum xerogel-based sorbent for removal of volatilized PbCl2 during the incineration: Improvement on mass-transfer limitations via high porosity. Sci. Total Environ., 2021, 782, 146925.
[http://dx.doi.org/10.1016/j.scitotenv.2021.146925]
[302]
Lamy-Mendes, A.; Torres, R.B.; Vareda, J.P.; Lopes, D.; Ferreira, M.; Valente, V.; Girao, A.V.; Valente, A.J.M.; Duraes, L. Amine modification of silica aerogels/xerogels for removal of relevant environmental pollutants. Molecules, 2019, 24(20), 3701.
[303]
Kundari, N.; Permadi, M.; Megasari, K.; Nurliati, G. Adsorption of Cobalt-60 (II) on silica xerogel from rice husk J. Phys.: Conf. Ser., 2019, 1295, 012038.
[304]
Liu, Y.; Yang, J. Hydrophobic modification of ZrO2-SiO2 xerogel and its adsorption properties to rhodamine B. Gels, 2022, 8(10), 675.
[http://dx.doi.org/10.3390/gels8100675] [PMID: 36286176]
[305]
Erdoo, K.R.; Tyoker, K.D.; David, O.A.; Thaddeus, L.T.; Ishwah, B.; Ajegi, O.J. Adsorption studies of silica adsorbent using rice husk as a base material for metal ions removal from aqueous solution. American J. Chem. Eng., 2020, 8(2), 48-53.
[http://dx.doi.org/10.11648/j.ajche.20200802.12]
[306]
Ribeiro, R.S.; Fathy, N.A.; Attia, A.A.; Silva, A.M.T.; Faria, J.L.; Gomes, H.T. Activated carbon xerogels for the removal of the anionic azo dyes Orange II and Chromotrope 2R by adsorption and catalytic wet peroxide oxidation. Chem. Eng. J., 2012, 195-196, 112-121.
[http://dx.doi.org/10.1016/j.cej.2012.04.065]
[307]
Moral-Rodriguez, A.I.; Leyva-Ramos, R.; Carrasco-Marín, F.; Bautista-Toledo, M.I.; Pérez-Cadenas, A.F. Adsorption of diclofenac from aqueous solution onto carbon xerogels: Effect of synthesis conditions and presence of bacteria. Water Air Soil Pollut., 2020, 231(1), 17.
[http://dx.doi.org/10.1007/s11270-019-4385-5]
[308]
Shouman, M.A.; Fathy, N.A. Microporous nanohybrids of carbon xerogels and multi-walled carbon nanotubes for removal of rhodamine B dye. J. Water Process Eng., 2018, 23, 165-173.
[http://dx.doi.org/10.1016/j.jwpe.2018.03.014]
[309]
El-Shafey, O.; El-Shafey, S.; Fathy, N. Mesoporous carbon xerogels adsorbents for adsorption of cadmium and p-nitrophenol pollutants: Kinetic and equilibrium studies. Egypt. J. Chem., 2022, 65, 487-497.
[310]
Sriram, G.; Bhat, M.P.; Kigga, M.; Uthappa, U.T.; Jung, H.Y.; Kumeria, T.; Kurkuri, M.D. Amine activated diatom xerogel hybrid material for efficient removal of hazardous dye. Mater. Chem. Phys., 2019, 235, 121738.
[http://dx.doi.org/10.1016/j.matchemphys.2019.121738]
[311]
Hernández-Campos, M.; Polo, A.M.S.; Sánchez-Polo, M.; Rivera-Utrilla, J.; Berber-Mendoza, M.S.; Andrade-Espinosa, G.; López-Ramón, M.V. Lanthanum-doped silica xerogels for the removal of fluorides from waters. J. Environ. Manage., 2018, 213, 549-554.
[http://dx.doi.org/10.1016/j.jenvman.2018.02.016] [PMID: 29472036]
[312]
Benally, C.; Messele, S.A.; Gamal El-Din, M. Adsorption of organic matter in oil sands process water (OSPW) by carbon xerogel. Water Res., 2019, 154, 402-411.
[http://dx.doi.org/10.1016/j.watres.2019.01.053] [PMID: 30822600]
[313]
Veselá, P.; Slovák, V.; Zelenka, T.; Koštejn, M.; Mucha, M. The influence of pyrolytic temperature on sorption ability of carbon xerogel based on 3-aminophenol-formaldehyde polymer for Cu(II) ions and phenol. J. Anal. Appl. Pyrolysis, 2016, 121, 29-40.
[http://dx.doi.org/10.1016/j.jaap.2016.06.016]
[314]
Fawzy, M.A.; Gomaa, M. Use of algal biorefinery waste and waste office paper in the development of xerogels: A low cost and eco-friendly biosorbent for the effective removal of congo red and Fe (II) from aqueous solutions. J. Environ. Manage., 2020, 262, 110380.
[http://dx.doi.org/10.1016/j.jenvman.2020.110380] [PMID: 32250831]
[315]
de Moraes, N.P.; Boldrin, F.H.C.; Campos, T.M.B.; Thim, G.P.; Lianqing, Y.; de Vasconcelos Lanza, M.R.; Rodrigues, L.A. Black-wattle tannin/kraft lignin H3PO4-activated carbon xerogels as excellent and sustainable adsorbents. Int. J. Biol. Macromol., 2023, 227, 58-70.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.12.125] [PMID: 36529224]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy