Generic placeholder image

Current Green Chemistry


ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Review Article

Vapor-Liquid Equilibrium of System Comprising Green Solvents: A Holistic Review

Author(s): Priyank Khirsariya and Vyomesh M. Parsana*

Volume 11, Issue 3, 2024

Published on: 01 December, 2023

Page: [229 - 235] Pages: 7

DOI: 10.2174/0122133461272026231101094324

Price: $65


The design and operation of distillation columns is based on vapor-liquid equilibrium data, which is a necessity for the chemical industry. In recent years, chemical industry has embraced green chemistry and sustainable development. Furthermore, green solvents are more environmentfriendly and cleaner than conventional solvents and thus offer a good alternative. Very limited work has been reported in the literature that focuses on the generation of isobaric/isothermal vapor-liquid equilibrium (VLE) data of systems comprising green solvents. In this paper, reported VLE data are explored for three emerging green solvents, such as cyclopentyl methyl ether (CPME), γ- valerolactone (GVL), and 2-methyltetrahydrofuran (2-MeTHF). Emerging green solvents have favorable environmental, health, and safety characteristics, making them attractive alternatives for a wide range of applications. The study focuses on two critical separations; the extraction of formic acid from Power-to-X chemical processes and purification of acetic acid from chemical synthesis or fermentation processes. Both processes are integral parts of the chemical industry's sustainable development. To facilitate these separations, accurate VLE data for these green solvents with acetic acid/formic acid systems are essential. The paper reviews literature related to VLE data for systems involving these green solvents. It provides insights into the experimental conditions, equipment, analysis methods, thermodynamic models, and error-minimizing functions used in the previous studies. The researchers can refer to this information as a useful reference prior to the VLE experimentation and modeling of systems comprising these three green solvents. Moreover, the paper presents an overview of recent research on green solvents and their applications, illustrating their versatility and potential for various industrial processes. Research efforts are needed to generate VLE data for green solvent systems and support the chemical industry in transitions towards more sustainable practices.

Keywords: Vapor-liquid equilibrium (VLE) data, cyclopentyl methyl ether (CPME), γ-valerolactone (GVL), 2-methyl tetrahydrofuran (2-MeTHF), chemical industry, green solvents.

Graphical Abstract
Winterton, N. The green solvent: A critical perspective. Clean Technol. Environ. Policy, 2021, 23(9), 2499-2522.
[] [PMID: 34608382]
Häckl, K.; Kunz, W. Some aspects of green solvents. C. R. Chim., 2018, 21(6), 572-580.
Schuur, B.; Brouwer, T.; Smink, D.; Sprakel, L.M.J. Green solvents for sustainable separation processes. Curr. Opin. Green Sustain. Chem., 2019, 18, 57-65.
Capello, C.; Fischer, U.; Hungerbühler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem., 2007, 9(9), 927-934.
Menges, N. The role of green solvents and catalysts at the future of drug design and of synthesis. Green Chemistry; IntechOpen, 2017.
Clarke, C.J.; Tu, W.C.; Levers, O.; Bröhl, A.; Hallett, J.P. Green and sustainable solvents in chemical processes. Chem. Rev., 2018, 118(2), 747-800.
[] [PMID: 29300087]
Byrne, F.P.; Jin, S.; Paggiola, G.; Petchey, T.H.M.; Clark, J.H.; Farmer, T.J.; Hunt, A.J.; Robert McElroy, C.; Sherwood, J. Tools and techniques for solvent selection: Green solvent selection guides. Sustainable Chem. Proc., 2016, 4(1), 7.
Welton, T. Solvents and sustainable chemistry. Proc.- Royal Soc., Math. Phys. Eng. Sci., 2015, 471(2183), 20150502.
[] [PMID: 26730217]
Prasad, W.; Wani, A.D.; Khamrui, K.; Hussain, S.A.; Khetra, Y. Green solvents, potential alternatives for petroleum based products in food processing industries. Cleaner Chem. Eng., 2022, 3, 100052.
Bradu, P.; Biswas, A.; Nair, C.; Sreevalsakumar, S.; Patil, M.; Kannampuzha, S.; Mukherjee, A.G.; Wanjari, U.R.; Renu, K.; Vellingiri, B.; Gopalakrishnan, A.V. Recent advances in green technology and Industrial Revolution 4.0 for a sustainable future. Environ. Sci. Pollut. Res. Int., 2022, 1-32.
[] [PMID: 35397034]
Parsana, V.M.; Parikh, S.; Ziniya, K.; Dave, H.; Gadhiya, P.; Joshi, K.; Gandhi, D.; Vlugt, T.J.H.; Ramdin, M. Isobaric vapor–liquid equilibrium data for tetrahydrofuran + acetic acid and tetrahydrofuran + trichloroethylene mixtures. J. Chem. Eng. Data, 2023, 68(2), 349-357.
[] [PMID: 36812039]
Lohmann, J.; Gmehling, J. Modified UNIFAC (Dortmund). Reliable model for the development of thermal separation processes. J. Chem. Eng. Jap., 2001, 34(1), 43-54.
Banat, F.; Al-Asheh, S.; Simandl, J. Vapor–liquid equilibria of propionic acid–water system in the presence of different types of inorganic salts: effect of temperature and salt concentration. Chem. Eng. Process., 2003, 42(11), 917-923.
IJmker, H.M.; Gramblička, M.; Kersten, S.R.A.; van der Ham, A.G.J.; Schuur, B. Acetic acid extraction from aqueous solutions using fatty acids. Separ. Purif. Tech., 2014, 125, 256-263.
Ramdin, M.; Morrison, A.R.T.; de Groen, M.; van Haperen, R.; de Kler, R.; Irtem, E.; Laitinen, A.T.; van den Broeke, L.J.P.; Breugelmans, T.; Trusler, J.P.M.; Jong, W.; Vlugt, T.J.H. High-pressure electrochemical reduction of CO2 to formic acid/formate: Effect of pH on the downstream separation process and economics. Ind. Eng. Chem. Res., 2019, 58(51), 22718-22740.
Rego de Vasconcelos, B.; Lavoie, J.M. Recent advances in power-to-X technology for the production of fuels and chemicals. Front Chem., 2019, 7, 392.
[] [PMID: 31231632]
Ince, A.C.; Colpan, C.O.; Hagen, A.; Serincan, M.F. Modeling and simulation of Power-to-X systems: A review. Fuel, 2021, 304, 121354.
Centi, G.; Perathoner, S. Catalytic Technologies for the Conversion and Reuse of CO2. In: Handbook of Climate Change Mitigation and Adaptation; Lackner, M.; Sajjadi, B.; Chen, W-Y., Eds.; Springer International Publishing: Cham, 2022; pp. 1803-1852.
Palys, M.J.; Daoutidis, P. Power-to-X: A review and perspective. Comput. Chem. Eng., 2022, 165, 107948.
Kountouris, I.; Langer, L.; Bramstoft, R.; Münster, M.; Keles, D. Power-to-X in energy hubs: A Danish case study of renewable fuel production. Energy Policy, 2023, 175, 113439.
Behroozi, M.; Vahedpour, M.; Shardi, M M. Separation of formic acid from aqueous solutions by liquid extraction technique at different temperatures. PCR, 2019, 7(1), 201-215.
Timedjeghdine, M.; Hasseine, A.; Binous, H.; Bacha, O.; Attarakih, M. Liquid–liquid equilibrium data for water + formic acid + solvent (butyl acetate, ethyl acetate, and isoamyl alcohol) at T = 291.15 K. Fluid Phase Equilib., 2016, 415, 51-57.
Deshmukh, G.; Manyar, H. Production pathways of acetic acid and its versatile applications in the food industry. In: Biotechnological Applications of Biomass; Peixoto B, T.; Olitta B, T.; Carlos Basso, L., Eds.; IntechOpen, 2021.
Kalck, P.; Le Berre, C.; Serp, P. Recent advances in the methanol carbonylation reaction into acetic acid. Coord. Chem. Rev., 2020, 402, 213078.
Xie, Q.; Wan, H.; Han, M.; Guan, G. Investigation on isobaric vapor–liquid equilibrium for acetic acid+water+methyl ethyl ketone+isopropyl acetate. Fluid Phase Equilib., 2009, 280(1-2), 120-128.
Karunanithi, S.; Kapoor, A.; Senthil Kumar, P.; Balasubramanian, S.; Rangasamy, G. Solvent extraction of acetic acid from aqueous solutions: A review. Sep. Sci. Technol., 2023, 58(11), 1985-2007.
Lei, Z.; Li, C.; Li, Y.; Chen, B. Separation of acetic acid and water by complex extractive distillation. Separ. Purif. Tech., 2004, 36(2), 131-138.
Majid, M.; Rezaei, R. Separation of acetic acid from water using organic solvents: Liquid-liquid equilibrium thermodynamic investigation. Phy. Chem. Res., 2020, 8(2), 267-280.
Al Musaimi, O.; Jad, Y.E.; Kumar, A.; Collins, J.M.; Basso, A.; de la Torre, B.G.; Albericio, F. Investigating green ethers for the precipitation of peptides after global deprotection in solid-phase peptide synthesis. Curr. Opin. Green Sustain. Chem., 2018, 11, 99-103.
Bangalore Ashok, R.P.; Oinas, P.; Forssell, S. Techno-economic evaluation of a biorefinery to produce γ-valerolactone (GVL), 2-methyltetrahydrofuran (2-MTHF) and 5-hydroxymethylfurfural (5-HMF) from spruce. Renew. Energy, 2022, 190, 396-407.
de Gonzalo, G.; Alcántara, A.R.; Domínguez de María, P. Cyclopentyl Methyl Ether (CPME): A versatile eco‐friendly solvent for applications in biotechnology and biorefineries. ChemSusChem, 2019, 12(10), 2083-2097.
[] [PMID: 30735610]
Alcantara, A.R.; de Maria, P.D. Recent advances on the use of 2-methyltetrahydrofuran (2-MeTHF) in biotransformations. Curr. Green Chem., 2018, 5(2), 86-103.
Alonso, D.M.; Wettstein, S.G.; Dumesic, J.A. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem., 2013, 15(3), 584.
Parsana, V.M.; Parsana, V.M. Measurement and correlation of vapour-liquid equilibria for cyclopentylmethyl ether + acetic acid at atmospheric pressure. In: Technology Drivers: Engine for Growth; Mahajan, A.; Modi, B.A.; Patel, P., Eds.; CRC Press, 2018; pp. 27-35.
Al-Lami, M.; Havasi, D.; Batha, B.; Pusztai, É.; Mika, L.T. Isobaric vapor–liquid equilibria for binary mixtures of biomass-derived γ-valerolactone + tetrahydrofuran and 2-methyltetrahydrofuran. J. Chem. Eng. Data, 2020, 65(6), 3063-3071.
Havasi, D.; Farkas, D.; Mika, L.T. Isobaric vapor–liquid equilibria of binary mixtures of γ-valerolactone + acetone and ethyl acetate. J. Chem. Eng. Data, 2020, 65(2), 419-425.
Patel, A.; Modi, C.; Joshipura, M.; Bhate, N. Measurement and correlation of isobaric vapor liquid equilibrium data for cyclopentyl methyl ether and cyclopentanol. J. Chem. Eng. Data, 2019, 64(2), 619-623.
Havasi, D.; Mizsey, P.; Mika, L.T. Vapor-liquid equilibrium study of the gamma-valerolactone-water binary system. J. Chem. Eng. Data, 2016, 61(4), 1502-1508.
Havasi, D.; Pátzay, G.; Kolarovszki, Z.; Mika, L.T. Isobaric vapor–liquid equilibria for binary mixtures of γ-valerolactone + methanol, ethanol, and 2-propanol. J. Chem. Eng. Data, 2016, 61(9), 3326-3333.
Havasi, D.; Hajnal, Á.; Pátzay, G.; Mika, L.T. Vapor–liquid equilibrium of γ-valerolactone and formic acid at p = 51 kPa. J. Chem. Eng. Data, 2017, 62(3), 1058-1062.
Mejía, A.; Cartes, M. Experimental determination of isobaric vapor–liquid equilibrium and isothermal interfacial tensions for the binary ethanol + cyclopentyl methyl ether mixture. J. Chem. Eng. Data, 2019, 64(5), 1970-1977.
Pokki, J.-P.; Lê, H. Q.; Uusi-Kyyny, P.; Sixta, H.; Alopaeus, V. Isobaric vapor–liquid equilibrium of furfural + γ-valerolactone at 30 kPa and isothermal liquid–liquid equilibrium of carbon dioxide + γ-valerolactone + water at 298 K. J. Chem. Eng. Data, 2018, 63, 4381-4391.
Laitinen, A.T.; Parsana, V.M.; Jauhiainen, O.; Huotari, M.; van den Broeke, L.J.P.; de Jong, W.; Vlugt, T.J.H.; Ramdin, M. Liquid–liquid extraction of formic acid with 2-methyltetrahydrofuran: Experiments, process modeling, and economics. Ind. Eng. Chem. Res., 2021, 60(15), 5588-5599.
[] [PMID: 34054211]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy