Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Systematic Review Article

Cuphea Genus: A Systematic Review on the Traditional uses, Phytochemistry, Pharmacology, and Toxicology

Author(s): Marí C. Santos*, Andreas S.L. Mendez and Amélia T. Henriques

Volume 10, Issue 6, 2024

Published on: 27 February, 2024

Article ID: e220823220154 Pages: 23

DOI: 10.2174/2215083810666230822100119

Price: $65

Abstract

Introduction: Species from the Cuphea genus (Lythraceae) have wide usage in traditional medicine for the treatment of various diseases. Cuphea comprises about 260 species distributed worldwide among five continents.

Methods: This systematic review aimed to synthesize the information available about the traditional uses, phytochemistry, pharmacology, and toxicology of Cuphea spp. This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria, with a search in the scientific databases, namely Scopus, Web of Science, PubMed, and ScienceDirect, using keywords, such as “Cuphea”, “sete-sangrias”, “Cuphea” and “polyphenols”, “Cuphea” and “flavonoid”, “Cuphea” and “pharmacology”, “Cuphea” and “traditional uses”, “Cuphea” and “toxicology”, and all references found were analyzed. Among 1438 publications identified in the initial screening, 86 studies were included based on eligibility criteria. The chemical composition of Cuphea spp. is mainly polyphenols related to therapeutic use, especially as an antioxidant, antimicrobial, antitumoral, anti-inflammation, and antihypertensive.

Results: In summary, this systematic review provides an overview of the active compounds responsible for the pharmacological actions of the genus, often linked to traditional use.

Conclusion: However, its safety and potential toxicology need to be further studied, along with the bioactive mechanisms and discussion of the structure-activity relationship, besides future clinical studies for novel drug development.

Keywords: Cuphea, Lythraceae, traditional uses, phytochemistry, pharmacology, toxicology.

Graphical Abstract
[1]
Fernandes FR, Santos AL, Arruda AMS, et al. Antinociceptive and antiinflammatory activities of the aqueous extract and isolated Cuphea carthagenensis (Jacq.) J. F. Macbr. Rev Bras Farmacogn 2002; 12: 55-6.
[http://dx.doi.org/10.1590/S0102-695X2002000300027]
[2]
Lusa MG, Bona C. Morphological, anatomical and histochemical characterization of Cuphea carthagenensis (Jacq.) J.F. Macbr. (Lythraceae). Acta Bot Bras 2011; 25: 517-27.
[http://dx.doi.org/10.1590/S0102-33062011000200027]
[3]
The International Plant Names Index and World Checklist of Selected Plant Families 2022. Royal Botanic Gardens Kew Sciences. 2022. Available from: http://www.plantsoftheworldonline.org/taxon/urn:lsid:ipni.org:names:30000193-2
[4]
Cavalcanti TB, Graham S. Cuphea in list of species of the flora of Brazil. Botanical Garden of Rio de Janeiro. 2015. Available from: http://floradobrasil.jbrj.gov.br/jabot/
[5]
Santos DYAC, Salatino MLF, Salatino A. Flavonoids of species of Cuphea (Lythraceae) from Brazil. Biochem Syst Ecol 1995; 23(1): 99-103.
[http://dx.doi.org/10.1016/0305-1978(94)00071-N]
[6]
Perez-Castorena AL, Maldonado E. Triterpenes and flavonoid glycosides from Cuphea wrightii. Biochem Syst Ecol 2003; 31(3): 331-4.
[http://dx.doi.org/10.1016/S0305-1978(02)00159-X]
[7]
Krepsky PB, Isidório RG, de Souza Filho JD, Côrtes SF, Braga FC. Chemical composition and vasodilatation induced by Cuphea carthagenensis preparations. Phytomedicine 2012; 19(11): 953-7.
[http://dx.doi.org/10.1016/j.phymed.2012.05.011] [PMID: 22739415]
[8]
Santos MC, Farias LS, Merlugo L, et al. UPLC-MS for identification of quercetin derivatives in Cuphea glutinosa Cham. & Schltdl (Lythraceae) and evaluation of antifungal potential. Curr Pharm Anal 2018; 14(6): 586-94.
[http://dx.doi.org/10.2174/1573412913666170918150924]
[9]
Santos MC, Toson NSB, Pimentel MCB, Bordignon SAL, Mendez ASL, Henriques AT. Polyphenols composition from leaves of Cuphea spp. and inhibitor potential, in vitro, of angiotensin I-converting enzyme (ACE). J Ethnopharmacol 2020; 255: 112781.
[http://dx.doi.org/10.1016/j.jep.2020.112781] [PMID: 32209389]
[10]
Santos MC, Soares KD, Beltrame BM, et al. Polyphenolic composition and in vitro antihypertensive and anti-inflammatory effects of Cuphea lindmaniana and Cuphea urbaniana. Chem Biodivers 2021; 18(7): e2100041.
[http://dx.doi.org/10.1002/cbdv.202100041] [PMID: 34000101]
[11]
Chen LG, Yen KY, Yang LL, Hatano T, Okuda T, Yoshida T. Macrocyclic ellagitannin dimers, cuphiins D1 and D2, and accompanying tannins from Cuphea hyssopifolia. Phytochemistry 1999; 50(2): 307-12.
[http://dx.doi.org/10.1016/S0031-9422(98)00512-3]
[12]
Castro BF, Wagner H, Lombardi JA, Braga de Oliveira A. Screening the Brazilian flora for antihypertensive plant species for in vitro angiotensin-I-converting enzyme inhibiting activity. Phytomedicine 2000; 7(3): 245-50.
[http://dx.doi.org/10.1016/S0944-7113(00)80011-2] [PMID: 11185737]
[13]
Krepsky PB, Farias MR, Côrtes SF, Braga FC. Quercetin-3-sulfate: A chemical marker for Cuphea carthagenensis. Biochem Syst Ecol 2010; 38(1): 125-7.
[http://dx.doi.org/10.1016/j.bse.2009.12.034]
[14]
Lusa MG, Biasi LA. Estaquia de Cuphea calophylla subsp. mesostemon (Koehne) Lourteig (Lythraceae). Rev Bras Plantas Med 2011; 13(1): 52-7.
[http://dx.doi.org/10.1590/S1516-05722011000100008]
[15]
Ghebretinsae AG, Graham SA, Camilo GR, Barber JC. Natural infraspecific variation in fatty acid composition of Cuphea (Lythraceae) seed oils. Ind Crops Prod 2008; 27(3): 279-87.
[http://dx.doi.org/10.1016/j.indcrop.2007.11.002]
[16]
Schuldt EZ, Ckless K, Simas ME, Farias MR, Ribeiro-Do-Valle RM. Butanolic fraction from Cuphea carthagenensis Jacq McBride relaxes rat thoracic aorta through endothelium-dependent and endothelium-independent mechanisms. J Cardiovasc Pharmacol 2000; 35(2): 234-9.
[http://dx.doi.org/10.1097/00005344-200002000-00009] [PMID: 10672855]
[17]
Schuldt EZ, Farias MR, Ribeiro-do-Valle RM, Ckless K. Comparative study of radical scavenger activities of crude extract and fractions from Cuphea carthagenensis leaves. Phytomedicine 2004; 11(6): 523-9.
[http://dx.doi.org/10.1016/j.phymed.2003.05.005] [PMID: 15500264]
[18]
Schaedler MI, Palozi RAC, Tirloni CAS, et al. Redox regulation and NO/cGMP plus K+ channel activation contributes to cardiorenal protection induced by Cuphea carthagenensis (Jacq.) J.F. Macbr. in ovariectomized hypertensive rats. Phytomedicine 2018; 51: 7-19.
[http://dx.doi.org/10.1016/j.phymed.2018.05.011] [PMID: 30466630]
[19]
Chen YC, Yang LL, Lee TJF. Oroxylin A inhibition of lipopolysaccharide-induced iNOS and COX-2 gene expression via suppression of nuclear factor-κB activation. Biochem Pharmacol 2000; 59(11): 1445-57.
[http://dx.doi.org/10.1016/S0006-2952(00)00255-0] [PMID: 10751555]
[20]
Palacios-Espinosa JF, Arroyo-García O, García-Valencia G, Linares E, Bye R, Romero I. Evidence of the anti-Helicobacter pylori, gastroprotective and anti-inflammatory activities of Cuphea aequipetala infusion. J Ethnopharmacol 2014; 151(2): 990-8.
[http://dx.doi.org/10.1016/j.jep.2013.12.012] [PMID: 24342782]
[21]
Campana PRV, Mansur DS, Gusman GS, Ferreira D, Teixeira MM, Braga FC. Anti-TNF-α activity of brazilian medicinal plants and compounds from Ouratea semiserrata. Phytother Res 2015; 29(10): 1509-15.
[http://dx.doi.org/10.1002/ptr.5401] [PMID: 26094613]
[22]
Ramírez-Atehortúa AM, Morales-Agudelo L, Osorio E, Lara-Guzmán OJ. The traditional medicinal plants Cuphea calophylla, Tibouchina kingii, and Pseudelephantopus spiralis attenuate inflammatory and oxidative mediators. Evid Based Complement Alternat Med 2018; 2018: 1-11.
[http://dx.doi.org/10.1155/2018/1953726] [PMID: 29849694]
[23]
Santos MC, Soares KD, Beltrame BM, et al. Cuphea spp.: Antichemotactic study for a potential anti-inflammatory drug. Nat Prod Res 2021; 35(24): 6058-61.
[http://dx.doi.org/10.1080/14786419.2020.1817921] [PMID: 32911965]
[24]
Avancini C, Wiest JM, Dall’Agnol R, Haas JS, von Poser GL. Antimicrobial activity of plants used in the prevention and control of bovine mastitis in southern Brazil. Lat Am J Pharm 2008; 27: 894-9.
[25]
Castillo-Juárez I, González V, Jaime-Aguilar H, et al. Anti-Helicobacter pylori activity of plants used in Mexican traditional medicine for gastrointestinal disorders. J Ethnopharmacol 2009; 122(2): 402-5.
[http://dx.doi.org/10.1016/j.jep.2008.12.021] [PMID: 19162157]
[26]
Bussmann RW, Malca-García G, Glenn A, et al. Minimum inhibitory concentrations of medicinal plants used in Northern Peru as antibacterial remedies. J Ethnopharmacol 2010; 132(1): 101-8.
[http://dx.doi.org/10.1016/j.jep.2010.07.048] [PMID: 20678568]
[27]
Mushtaq S, Shah AM, Shah A, et al. Bovine mastitis: An appraisal of its alternative herbal cure. Microb Pathog 2018; 114: 357-61.
[http://dx.doi.org/10.1016/j.micpath.2017.12.024] [PMID: 29233776]
[28]
Calzada F, Alanis AD, Meckes M, Tapia-Contreras A, Cedillo-Rivera R. In vitro susceptibility ofEntamoeba histolytica andGiardia lamblia to some medicinal plants used by the people of Southern Mexico. Phytother Res 1998; 12(1): 70-2.
[http://dx.doi.org/10.1002/(SICI)1099-1573(19980201)12:1<70:AID-PTR189>3.0.CO;2-V]
[29]
Calzada F, Meckes M, Cedillo-Rivera R. Antiamoebic and antigiardial activity of plant flavonoids. Planta Med 1999; 65(1): 78-80.
[http://dx.doi.org/10.1055/s-2006-960445] [PMID: 10083850]
[30]
Calzada F. Additional antiprotozoal constituents from Cuphea pinetorum, a plant used in Mayan traditional medicine to treat diarrhoea. Phytother Res 2005; 19(8): 725-7.
[http://dx.doi.org/10.1002/ptr.1717] [PMID: 16177979]
[31]
Sharma P, Sharma JD. A review of plant species assessed in? vitro for antiamoebic activity or both antiamoebic and antiplasmodial properties. Phytother Res 2001; 15(1): 1-17.
[http://dx.doi.org/10.1002/1099-1573(200102)15:1<1:::AIDPTR959>3.0.CO;2-L] [PMID: 11180515]
[32]
Barbosa E, Calzada F, Campos R. In vivo antigiardial activity of three flavonoids isolated of some medicinal plants used in Mexican traditional medicine for the treatment of diarrhea. J Ethnopharmacol 2007; 109(3): 552-4.
[http://dx.doi.org/10.1016/j.jep.2006.09.009] [PMID: 17052875]
[33]
Wang CC, Chen LG, Yang LL. Antitumor activity of four macrocyclic ellagitannins from Cuphea hyssopifolia. Cancer Lett 1999; 140(1-2): 195-200.
[http://dx.doi.org/10.1016/S0304-3835(99)00071-3] [PMID: 10403559]
[34]
Wang CC, Chen LG, Yang LL. Cuphiin D1, the macrocyclic hydrolyzable tannin induced apoptosis in HL-60 cell line. Cancer Lett 2000; 149(1-2): 77-83.
[http://dx.doi.org/10.1016/S0304-3835(99)00344-4] [PMID: 10737711]
[35]
Wang CC, Chen LG, Yang LL. Cytotoxic effects of cuphiin D1 on the growth of human cervical carcinoma and normal cells. Anticancer Res 2002; 22(5): 2677-84.
[PMID: 12529981]
[36]
Wang C-C, Chen L-G, Yang L-L. In vitro immunomodulatory effects of cuphiin D1 on human mononuclear cells. Anticancer Res 2002; 22(6C): 4233-6.
[PMID: 12553063]
[37]
Avila EV, Aguilar RT, Estrada MJ, Ortega MLV, Ramos RR. Cytotoxic activity of Cuphea aequipetala. Proc West Pharmacol Soc 2004; 47: 129-33.
[PMID: 15633633]
[38]
Hassan SK, Mousa AM, El-Sammad NM, et al. Antitumor activity of Cuphea ignea extract against benzo(a)pyrene-induced lung tumorigenesis in Swiss Albino mice. Toxicol Rep 2019; 6: 1071-85.
[http://dx.doi.org/10.1016/j.toxrep.2019.10.004] [PMID: 31660294]
[39]
Uscanga-Palomeque AC, Zapata-Benavides P, Saavedra-Alonso S, et al. Inhibitory effect of Cuphea aequipetala extracts on murine B16F10 melanoma in vitro and in vivo. BioMed Res Int 2019; 2019: 1-11.
[http://dx.doi.org/10.1155/2019/8560527] [PMID: 31275985]
[40]
Graham SA. A revision of Cuphea section brachyandra s. s. (Lythraceae). Syst Bot 2017; 42(4): 859-919.
[http://dx.doi.org/10.1600/036364417X696528]
[41]
Santos MC, Henriques AT, Mendez ASL. Analytical methods of phytochemicals from the Cuphea genus - A review. Drug Anal Res 2021; 5(2): 4-10.
[http://dx.doi.org/10.22456/2527-2616.120618]
[42]
Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 2009; 151(4): 264-269, W64.
[http://dx.doi.org/10.7326/0003-4819-151-4-200908180-00135] [PMID: 19622511]
[43]
Hooijmans CR, Rovers MM, de Vries RBM, Leenaars M, Ritskes-Hoitinga M, Langendam MW. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 2014; 14(1): 43.
[http://dx.doi.org/10.1186/1471-2288-14-43] [PMID: 24667063]
[44]
Roskoski R Jr. Guidelines for preparing color figures for everyone including the colorblind. Pharmacol Res 2017; 119: 240-1.
[http://dx.doi.org/10.1016/j.phrs.2017.02.005] [PMID: 28189785]
[45]
Alonso-Castro AJ, Villarreal ML, Salazar-Olivo LA, Gomez-Sanchez M, Dominguez F, Garcia-Carranca A. Mexican medicinal plants used for cancer treatment: Pharmacological, phytochemical and ethnobotanical studies. J Ethnopharmacol 2011; 133(3): 945-72.
[http://dx.doi.org/10.1016/j.jep.2010.11.055] [PMID: 21146599]
[46]
Madureira AR, Pereira A, Pintado M. Current state on the development of nanoparticles for use against bacterial gastrointestinal pathogens. Focus on chitosan nanoparticles loaded with phenolic compounds. Carbohydr Polym 2015; 130: 429-39.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.030] [PMID: 26076644]
[47]
Sharma A, Flores-Vallejo RC, Cardoso-Taketa A, Villarreal ML. Antibacterial activities of medicinal plants used in Mexican traditional medicine. J Ethnopharmacol 2017; 208: 264-329.
[http://dx.doi.org/10.1016/j.jep.2016.04.045] [PMID: 27155134]
[48]
Amat AG, Yajia ME, Gonzalez CF, et al. Evaluation of cytological parameters induced by aqueous extracts of seven plants used as antihypertensive agents in Argentine folk medicine. Lat Am J Pharm 2002; 21: 37-42.
[49]
Elisabetsky E, Posey DA. Use of contraceptive and related plants by the Kayapo Indians (Brazil). J Ethnopharmacol 1989; 26(3): 299-316.
[http://dx.doi.org/10.1016/0378-8741(89)90103-7] [PMID: 2615411]
[50]
Dickel ML, Rates SMK, Ritter MR. Plants popularly used for loosing weight purposes in Porto Alegre, South Brazil. J Ethnopharmacol 2007; 109(1): 60-71.
[http://dx.doi.org/10.1016/j.jep.2006.07.003] [PMID: 16963210]
[51]
Coe FG. Rama midwifery in eastern Nicaragua. J Ethnopharmacol 2008; 117(1): 136-57.
[http://dx.doi.org/10.1016/j.jep.2008.01.027] [PMID: 18337033]
[52]
Oliveira SGD, de Moura FRR, Demarco FF, Nascente PS, Pino FABD, Lund RG. An ethnomedicinal survey on phytotherapy with professionals and patients from Basic Care Units in the Brazilian Unified Health System. J Ethnopharmacol 2012; 140(2): 428-37.
[http://dx.doi.org/10.1016/j.jep.2012.01.054] [PMID: 22338646]
[53]
Medeiros PM, Ladio AH, Albuquerque UP. Patterns of medicinal plant use by inhabitants of Brazilian urban and rural areas: A macroscale investigation based on available literature. J Ethnopharmacol 2013; 150(2): 729-46.
[http://dx.doi.org/10.1016/j.jep.2013.09.026] [PMID: 24095828]
[54]
Bieski IGC, Leonti M, Arnason JT, et al. Ethnobotanical study of medicinal plants by population of Valley of Juruena Region, Legal Amazon, Mato Grosso, Brazil. J Ethnopharmacol 2015; 173: 383-423.
[http://dx.doi.org/10.1016/j.jep.2015.07.025] [PMID: 26234177]
[55]
Ribeiro RV, Bieski IGC, Balogun SO, Martins DTO. Ethnobotanical study of medicinal plants used by Ribeirinhos in the North Araguaia microregion, Mato Grosso, Brazil. J Ethnopharmacol 2017; 205: 69-102.
[http://dx.doi.org/10.1016/j.jep.2017.04.023] [PMID: 28476677]
[56]
Magalhães KN, Guarniz WAS, Sá KM, et al. Medicinal plants of the Caatinga, northeastern Brazil: Ethnopharmacopeia (1980–1990) of the late professor Francisco José de Abreu Matos. J Ethnopharmacol 2019; 237: 314-53.
[http://dx.doi.org/10.1016/j.jep.2019.03.032] [PMID: 30885881]
[57]
Yazbek PB, Matta P, Passero LF, et al. Plants utilized as medicines by residents of Quilombo da Fazenda, Núcleo Picinguaba, Ubatuba, São Paulo, Brazil: A participatory survey. J Ethnopharmacol 2019; 244: 112123.
[http://dx.doi.org/10.1016/j.jep.2019.112123] [PMID: 31356967]
[58]
Tabakian G. Comparative study of medicinal plants linked to indigenous and European traditions in Uruguay. Bonplandia 2019; 28(2): 135-58.
[http://dx.doi.org/10.30972/bon.2823855]
[59]
Goleniowski ME, Bongiovanni GA, Palacio L, Nuñez CO, Cantero JJ. Medicinal plants from the “Sierra de Comechingones”, Argentina. J Ethnopharmacol 2006; 107(3): 324-41.
[http://dx.doi.org/10.1016/j.jep.2006.07.026] [PMID: 16949228]
[60]
Serna JAM, Ríos EG, Madrigal D, Cárdenas J, Salmón M. Constituents of organic extracts of Cuphea hyssopifolia. J Mex Chem Soc 2011; 55: 62-4.
[61]
Mousa AM, El-Sammad NM, Hassan SK, et al. Antiulcerogenic effect of Cuphea ignea extract against ethanol-induced gastric ulcer in rats. BMC Complement Altern Med 2019; 19(1): 345.
[http://dx.doi.org/10.1186/s12906-019-2760-9] [PMID: 31791313]
[62]
Bolson M, Hefler SM, Dall’Oglio Chaves EI, Gasparotto Junior A, Cardozo Junior EL. Ethno-medicinal study of plants used for treatment of human ailments, with residents of the surrounding region of forest fragments of Paraná, Brazil. J Ethnopharmacol 2015; 161: 1-10.
[http://dx.doi.org/10.1016/j.jep.2014.11.045] [PMID: 25482361]
[63]
Tene V, Malagón O, Finzi PV, Vidari G, Armijos C, Zaragoza T. An ethnobotanical survey of medicinal plants used in Loja and Zamora-Chinchipe, Ecuador. J Ethnopharmacol 2007; 111(1): 63-81.
[http://dx.doi.org/10.1016/j.jep.2006.10.032] [PMID: 17137737]
[64]
Valadeau C, Castillo JA, Sauvain M, Lores AF, Bourdy G. The rainbow hurts my skin: Medicinal concepts and plants uses among the Yanesha (Amuesha), an Amazonian Peruvian ethnic group. J Ethnopharmacol 2010; 127(1): 175-92.
[http://dx.doi.org/10.1016/j.jep.2009.09.024] [PMID: 19835943]
[65]
Meinhart AD, Caldeirão L, Damin FM, Filho JT, Godoy HT. Analysis of chlorogenic acids isomers and caffeic acid in 89 herbal infusions (tea). J Food Compos Anal 2018; 73: 76-82.
[http://dx.doi.org/10.1016/j.jfca.2018.08.001]
[66]
Zelada Mallco D, Díaz Amao L, Quispe Huanca D, et al. Characterization of phenolic compounds from the methanolic extract of leaves and stems of Cuphea ciliata Ruiz & Pav. (bull grass). Peruvian Journal of Integrative Medicine 2019; 4(2): 42-8.
[http://dx.doi.org/10.26722/rpmi.2019.v4n2.507]
[67]
Elgindi M, Ayoub N, Milad R, Mekky R. Antioxidant and cytotoxic activities of Cuphea hyssopifolia Kunth (Lythraceae) cultivated in Egypt. J Pharmacogn Phytochem 2012; 1: 67-77.
[68]
Salatino A, Salatino MLF, Santos DYAC, Patrício MCB. Distribution and evolution of secondary metabolites in Eriocaulaceae, Lythraceae and Velloziaceae from “campos rupestres”. Genet Mol Biol 2000; 23(4): 931-40.
[http://dx.doi.org/10.1590/S1415-47572000000400038]
[69]
Zago AM, Carvalho FB, Gutierres JM, et al. A phytochemical study of the Cuphea glutinosa from Southern Brazil: Na +, K + -ATPase activity inhibition and antioxidant properties. Nat Prod Res 2019; 33(23): 3426-31.
[http://dx.doi.org/10.1080/14786419.2018.1477143] [PMID: 29781304]
[70]
Klider LM, Machado CD, de Almeida VP, et al. Cuphea calophylla var. mesostemon (Koehne) S.A. Graham: A whole-ethnopharmacological investigation. J Med Food 2020; 0: 1-17.
[http://dx.doi.org/10.1089/jmf.2020.0069] [PMID: 32985931]
[71]
Sobolewska D, Owczarek A, Olszewska M, et al. UHPLC-PDA-ESI-MS profile of phenolic compounds in the aerial parts of Cuphea ingrata Cham. & Schltdl. Nat Prod Res 2022; 36(14): 3721-5.
[http://dx.doi.org/10.1080/14786419.2020.1868463] [PMID: 33390022]
[72]
Barboza LN, Lívero FAR, Prando TBL, et al. Atheroprotective effects of Cuphea carthagenensis (Jacq.) J. F. Macbr. in New Zealand rabbits fed with cholesterol-rich diet. J Ethnopharmacol 2016; 187: 134-45.
[http://dx.doi.org/10.1016/j.jep.2016.04.027] [PMID: 27125593]
[73]
Martínez-Bonfil BP, Cruz-Hernández A, López-Laredo AR, Trejo-Tapia G, Trejo-Espino JL. Effects of culture medium and auxins on growth of adventitious root cultures of Cuphea aequipetala Cav. and their ability to produce antioxidant compounds. Plant Cell Tissue Organ Cult 2014; 118(3): 401-8.
[http://dx.doi.org/10.1007/s11240-014-0492-6]
[74]
Lima Prando TB, Barboza LN, Gasparotto FM, et al. Ethnopharmacological investigation of the diuretic and hemodynamic properties of native species of the Brazilian biodiversity. J Ethnopharmacol 2015; 174: 369-78.
[http://dx.doi.org/10.1016/j.jep.2015.08.029] [PMID: 26319961]
[75]
Mahmoud DB, Ismail WM, Moatasim Y, et al. Delineating a potent antiviral activity of Cuphea ignea extract loaded nano-formulation against SARS-CoV-2: In silico and in vitro studies. J Drug Deliv Sci Technol 2021; 66: 102845.
[http://dx.doi.org/10.1016/j.jddst.2021.102845] [PMID: 34539819]
[76]
Santos MC, Koetz M, Mendez ASL, Henriques AT. Ultrasound-assisted extraction optimization and validation of ultra-performance liquid chromatographic method for the quantification of miquelianin in Cuphea glutinosa leaves. Talanta 2020; 216: 120988.
[http://dx.doi.org/10.1016/j.talanta.2020.120988] [PMID: 32456919]
[77]
Meinhart AD, Damin FM, Caldeirão L, da Silveira TFF, Filho JT, Godoy HT. Chlorogenic acid isomer contents in 100 plants commercialized in Brazil. Food Res Int 2017; 99(Pt 1): 522-30.
[http://dx.doi.org/10.1016/j.foodres.2017.06.017] [PMID: 28784513]
[78]
Ojeda D, Jiménez-Ferrer E, Zamilpa A, Herrera-Arellano A, Tortoriello J, Alvarez L. Inhibition of angiotensin convertin enzyme (ACE) activity by the anthocyanins delphinidin- and cyanidin-3-O-sambubiosides from Hibiscus sabdariffa. J Ethnopharmacol 2010; 127(1): 7-10.
[http://dx.doi.org/10.1016/j.jep.2009.09.059] [PMID: 19808084]
[79]
Larson A, Symons JD, Jalili T. Quercetin: a treatment for hypertension?-a review of efficacy and mechanisms. Pharmaceuticals 2010; 3(1): 237-50.
[http://dx.doi.org/10.3390/ph3010237] [PMID: 27713250]
[80]
Ismail W, Ezzat S, Michel H, El Deeb K, El-Fishawy A. Angiotensin-converting enzyme and renin inhibition activities, antioxidant properties, phenolic and flavonoid contents of Cuphea ignea A. DC. J Rep Pharm Sci 2020; 9(1): 92-6.
[http://dx.doi.org/10.4103/jrptps.JRPTPS_81_19]
[81]
Balmaceda RB, Cardinali FJ, Thevenon MA, Di Santo ME. Diuretic effect of Cupea glutinosa Cham. et Schltdl (Lythraceae) in Wistar rats. Dominguezia 2018; 34: 45-51.
[82]
Ribeiro RA, de Barros F, de Melo MM, et al. Acute diuretic effects in conscious rats produced by some medicinal plants used in the state of São Paulo, Brasil. J Ethnopharmacol 1988; 24(1): 19-29.
[http://dx.doi.org/10.1016/0378-8741(88)90136-5] [PMID: 3199837]
[83]
Ameye H, Swinnen J. Obesity, income and gender: The changing global relationship. Glob Food Secur 2019; 23: 267-81.
[http://dx.doi.org/10.1016/j.gfs.2019.09.003]
[84]
Villa-Ruano N, Zurita-Vásquez GG, Pacheco-Hernández Y, Betancourt-Jiménez MG, Cruz-Durán R, Duque-Bautista H. Anti-Iipase and antioxidant properties of 30 medicinal plants used in Oaxaca, México. Biol Res 2013; 46(2): 153-60.
[http://dx.doi.org/10.4067/S0716-97602013000200006] [PMID: 23959013]
[85]
Fuhrman B, Aviram M. Flavonoids protect LDL from oxidation and attenuate atherosclerosis. Curr Opin Lipidol 2001; 12(1): 41-8.
[http://dx.doi.org/10.1097/00041433-200102000-00008] [PMID: 11176202]
[86]
Zeka K, Ruparelia K, Arroo R, Budriesi R, Micucci M. Flavonoids and their metabolites: Prevention in cardiovascular diseases and diabetes. Diseases 2017; 5(3): 19.
[http://dx.doi.org/10.3390/diseases5030019] [PMID: 32962323]
[87]
Biavatti MW, Farias C, Curtius F, et al. Preliminary studies on Campomanesia xanthocarpa (Berg.) and Cuphea carthagenensis (Jacq.) J.F. Macbr. aqueous extract: Weight control and biochemical parameters. J Ethnopharmacol 2004; 93(2-3): 385-9.
[http://dx.doi.org/10.1016/j.jep.2004.04.015] [PMID: 15234782]
[88]
Alonso-Castro AJ, Arana-Argáez V, Yáñez-Barrientos E, et al. Antinociceptive and anti-inflammatory effects of Cuphea aequipetala Cav (Lythraceae). Inflammopharmacology 2021; 29(1): 295-306.
[http://dx.doi.org/10.1007/s10787-020-00709-3] [PMID: 32333259]
[89]
Bonfil BPM, Montero MP, Laredo ARL, Morales GS, Lozano SE, Tapia GT. A propagation procedure for Cuphea aequipetala Cav. (Lythraceae) and antioxidant properties of wild and greenhouse-grown plants. Bol Latinoam Caribe Plantas Med Aromat 2013; 12(1): 1-14.
[90]
Sandoval BAC, Laredo ARL, Bonfil BPM, Torres KB, Tapia GT. Advances in the phytochemistry of Cuphea aequipetala, C. aequipetala var. hispida and C. lanceolata: extraction and quantification of phenolic compounds and antioxidant Activity. Rev Mex Ing Quim 2012; 11(3): 401-13.
[91]
Bhebhe M, Füller TN, Chipurura B, Muchuweti M. Effect of solvent type on total phenolic content and free radical scavenging activity of black tea and herbal infusions. Food Anal Methods 2016; 9(4): 1060-7.
[http://dx.doi.org/10.1007/s12161-015-0270-z]
[92]
Begmeier D, Berres PHD, Filippi D, Bilibio D, Bettiol VR, Priamo WL. Extraction of total polyphenols from hibiscus (Hibiscus sabdariffa L.) and waxweed/“sete-sangrias” (Cuphea carthagenensis) and evaluation of their antioxidant potential. Acta Sci Technol 2014; 36(3): 545-51.
[http://dx.doi.org/10.4025/actascitechnol.v36i3.19093]
[93]
Rather MA, Gupta K, Mandal M. Inhibition of biofilm and quorum sensing-regulated virulence factors in Pseudomonas aeruginosa by Cuphea carthagenensis (Jacq.) J. F. Macbr. Leaf extract: An in vitro study. J Ethnopharmacol 2021; 269: 113699.
[http://dx.doi.org/10.1016/j.jep.2020.113699] [PMID: 33340600]
[94]
Xie Y, Yang W, Tang F, Chen X, Ren L. Antibacterial activities of flavonoids: structure-activity relationship and mechanism. Curr Med Chem 2014; 22(1): 132-49.
[http://dx.doi.org/10.2174/0929867321666140916113443] [PMID: 25245513]
[95]
Al Aboody MS, Mickymaray S. Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics 2020; 9(2): 45.
[http://dx.doi.org/10.3390/antibiotics9020045] [PMID: 31991883]
[96]
Andrighetti-Fröhner CR, Sincero TCM, da Silva AC, et al. Antiviral evaluation of plants from brazilian atlantic tropical forest. Fitoterapia 2005; 76(3-4): 374-8.
[http://dx.doi.org/10.1016/j.fitote.2005.03.010] [PMID: 15890472]
[97]
Nazer MR, Abbaszadeh S, Anbari K, Shams M. A review of the most important medicinal herbs affecting giardiasis. J Herb Med Pharmacol 2019; 8(2): 78-84.
[http://dx.doi.org/10.15171/jhp.2019.13]
[98]
Calzada F, Correa-Basurto J, Barbosa E, Mendez-Luna D, Yepez-Mulia L. Antiprotozoal constituents from Annona cherimola miller, a plant used in mexican traditional medicine for the treatment of diarrhea and dysentery. Pharmacogn Mag 2017; 13(49): 148-52.
[PMID: 28216899]
[99]
Coe FG, Parikh DM, Johnson CA. Alkaloid presence and brine shrimp (Artemia salina) bioassay of medicinal species of eastern Nicaragua. Pharm Biol 2010; 48(4): 439-45.
[http://dx.doi.org/10.3109/13880200903168015] [PMID: 20645724]
[100]
Bussmann RW, Malca G, Glenn A, et al. Toxicity of medicinal plants used in traditional medicine in Northern Peru. J Ethnopharmacol 2011; 137(1): 121-40.
[http://dx.doi.org/10.1016/j.jep.2011.04.071] [PMID: 21575699]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy