Generic placeholder image

Current Traditional Medicine


ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

A Review on Anti-leishmanial Activity of Terpenes and Chitosan as a Carrier for Nano-formulations

Author(s): Tanvi Goel and Deepali Bansode*

Volume 10, Issue 6, 2024

Published on: 16 August, 2023

Article ID: e270723219171 Pages: 13

DOI: 10.2174/2215083810666230727094905

Price: $65


Leishmaniasis is one of the most devastating and fatal diseases in humans that has been known to mankind and is caused by the parasite Leishmania. It is destructive since no vaccination is available and existing medicines are proving ineffective because of resistance development.

A need for the discovery of newer drugs has emerged. The use of natural products for the prevention, diagnosis, and cure of diseases has rapidly increased. Following the trend, research in the field of natural products for treating leishmaniasis has also picked up. In the present review, the focus is on terpenes as anti-leishmanial agents. Terpenes are the least studied natural products for the treatment of the disease. The other part of the review covers the use of chitosan as an anti-leishmanial agent and other formulations of chitosan as a carrier in nano-formulations.

From the survey, it was found that the essential oils containing terpenes are very effective. Moreover, the chitosan-based nanocarriers showed potent anti-leishmanial activity. The combined use of natural products and newer technologies for the delivery of drugs can eradicate various diseases.

Keywords: Chitosan, essential oils, leishmaniasis, nano-formulations, natural products, terpenes.

Graphical Abstract
Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R. Leishmaniasis: a review. F1000 Res 2017; 6(May): 750.
[] [PMID: 28761456]
Roatt BM, de Oliveira Cardoso JM, De Brito RCF, Coura-Vital W, de Oliveira Aguiar-Soares RD, Reis AB. Recent advances and new strategies on leishmaniasis treatment. Appl Microbiol Biotechnol 2020; 104(21): 8965-77.
[] [PMID: 32875362]
Seaman J, Mercer AJ, Sondorp HE, Herwaldt BL. Epidemic visceral leishmaniasis in southern Sudan: treatment of severely debilitated patients under wartime conditions and with limited resources. Ann Intern Med 1996; 124(7): 664-72.
[] [PMID: 8607595]
Patel AV. American college of sports medicine roundtable report on physical activity, sedentary behavior, and cancer prevention and control. Med Sci Sports Exerc 2018; 2020(51): 2391-402.
Thakur CP. Socio-economics of visceral leishmaniasis in Bihar (India). Trans R Soc Trop Med Hyg 2000; 94(2): 156-7.
[] [PMID: 10897353]
Desjeux P. Leishmaniasis: current situation and new perspectives. Comp Immunol Microbiol Infect Dis 2004; 27(5): 305-18.
[] [PMID: 15225981]
Salari S, Sharifi I, Keyhani AR, Ghasemi Nejad Almani P. Evaluation of a new live recombinant vaccine against cutaneous leishmaniasis in BALB/c mice. Parasit Vectors 2020; 13(1): 415.
[] [PMID: 32787908]
Velez R, Gállego M. Commercially approved vaccines for canine leishmaniosis: a review of available data on their safety and efficacy. Trop Med Int Health 2020; 25(5): 540-57.
[] [PMID: 32034985]
Iwu MM, Jackson JE, Schuster BG. Medicinal plants in the fight against leishmaniasis. Parasitol Today 1994; 10(2): 65-8.
[] [PMID: 15275504]
García M, Monzote L, Montalvo AM, Scull R. Screening of medicinal plants against Leishmania amazonensis. Pharm Biol 2010; 48(9): 1053-8.
[] [PMID: 20731558]
Cheung R, Ng T, Wong J, Chan W. Chitosan. Mar Drugs 2015; 13(8): 5156-86.
[] [PMID: 26287217]
Kravanja G, Primožič M, Knez Ž, Leitgeb M. Chitosan-based (nano)materials for novel biomedical applications. Molecules 2019; 24(10): 1960.
[] [PMID: 31117310]
Croft SL. Recent developments in the chemotherapy of leishmaniasis. Trends Pharmacol Sci 1988; 9(10): 376-81.
[] [PMID: 3078072]
Paduch R, Kandefer-Szerszeń M, Trytek M, Fiedurek J. Terpenes: substances useful in human healthcare. Arch Immunol Ther Exp (Warsz) 2007; 55(5): 315-27.
[] [PMID: 18219762]
Oliva B, Piccirilli E, Ceddia T, Pontieri E, Aureli P, Ferrini AM. Antimycotic activity of Melaleuca alternifolia essential oil and its major components. Lett Appl Microbiol 2003; 37(2): 185-7.
[] [PMID: 12859665]
Lima GS, Castro-Pinto DB, Machado GC, Maciel MAM, Echevarria A. Antileishmanial activity and trypanothione reductase effects of terpenes from the Amazonian species Croton cajucara Benth (Euphorbiaceae). Phytomedicine 2015; 22(12): 1133-7.
[] [PMID: 26547537]
Novello CR, Marques LC, Pires ME, et al. Bioactive Indole Alkaloids from Croton echioides. J Braz Chem Soc 2016; 27(12): 2203-9.
Novello CR, Düsman E, Balbinot RB, et al. Antileishmanial activity of neo -clerodane diterpenes from Croton echioides. Nat Prod Res 2022; 36(4): 925-31.
[] [PMID: 33249918]
da Silva J, Andrade E, Barreto L, et al. Chemical Composition of Four Essential Oils of Eugenia from the Brazilian Amazon and Their Cytotoxic and Antioxidant Activity. Medicines (Basel) 2017; 4(3): 51.
[] [PMID: 28930266]
Monzote L, Herrera I, Satyal P, Setzer W. In-vitro evaluation of 52 commercially-available essential oils against Leishmania amazonensis. Molecules 2019; 24(7): 1248.
[] [PMID: 30934998]
Arruda DC, Alexandri FL, Katzin AM, Uliana SRB. Legal Studies Paper No. 2011-04 the Role of Experts in International Adjudication. Antimicrob Agents Chemother 2005; 49(5): 1679-87.
[] [PMID: 15855481]
Arruda DC, Miguel DC, Yokoyama-Yasunaka JKU, Katzin AM, Uliana SRB. Inhibitory activity of limonene against Leishmania parasites in vitro and in vivo. Biomed Pharmacother 2009; 63(9): 643-9.
[] [PMID: 19321295]
Monzote L, Geroldinger G, Tonner M, et al. Interaction of ascaridole, carvacrol, and caryophyllene oxide from essential oil of Chenopodium ambrosioides L. with mitochondria in Leishmania and other eukaryotes. Phytother Res 2018; 32(9): 1729-40.
[] [PMID: 29672979]
Durazzini AMS, Machado CHM, Fernandes CC, et al. Eugenia pyriformis Cambess: a species of the Myrtaceae family with bioactive essential oil. Nat Prod Res 2019; 35(16): 1-5.
[] [PMID: 31549535]
Khalid SA, Farouk A, Geary TG, Jensen JB. Potential antimalarial candidates from African plants: An in vitro approach using Plasmodium falciparum. J Ethnopharmacol 1986; 15(2): 201-9.
[] [PMID: 3520157]
Onifade AK, Fatope MO, Deadman ML, Al-Kindy SMZ. Nematicidal activity of Haplophyllum tuberculatum and Plectranthus cylindraceus oils against Meloidogyne javanica. Biochem Syst Ecol 2008; 36(9): 679-83.
Mohsen ZH, Jaffer HJ, Alsaadi M, Ali ZS. Insecticidal Effects of Haplophyllum tuberculatum Against Culex quinquefasciatus. Int J Crude Drug Res 1989; 27(1): 17-21.
Hamdi A, Bero J, Beaufay C, et al. In vitro antileishmanial and cytotoxicity activities of essential oils from Haplophyllum tuberculatum A. Juss leaves, stems and aerial parts. BMC Complement Altern Med 2018; 18(1): 60.
[] [PMID: 29444667]
Kidane B, van Andel T, van der Maesen LJG, Asfaw Z. Use and management of traditional medicinal plants by Maale and Ari ethnic communities in southern Ethiopia. J Ethnobiol Ethnomed 2014; 10(1): 46.
[] [PMID: 24898079]
Geyid A, Abebe D, Debella A, et al. Screening of some medicinal plants of Ethiopia for their anti-microbial properties and chemical profiles. J Ethnopharmacol 2005; 97(3): 421-7.
[] [PMID: 15740876]
Ayalew H, Tadesse S, Bisrat D, et al. Chemical composition and in vitro antileishmanial activity of essential oil of the leaves of Discopodium pennnervium Hochst. Ethiopian Pharmaceutical Journal 2019; 34(2): 75.
Tonetti OAO, Faria JMR, José AC, Oliveira TGS, Martins JC. Seed survival of the tropical tree C ryptocarya aschersoniana (Lauraceae): Consequences of habitat disturbance. Austral Ecol 2016; 41(3): 248-54.
Andrade PMD, Melo DCD, Alcoba AET, et al. Chemical composition and evaluation of antileishmanial and cytotoxic activities of the essential oil from leaves of Cryptocarya aschersoniana Mez. (Lauraceae Juss.). An Acad Bras Cienc 2018; 90(3): 2671-8.
[] [PMID: 30304213]
Alipour G, Dashti S, Hosseinzadeh H. Review of pharmacological effects of Myrtus communis L. and its active constituents. Phytother Res 2014; 28(8): 1125-36.
[] [PMID: 24497171]
Sumbul S, Aftab Ahmad M, Asif M, Akhtar M. Myrtus communis Linn. - A Review. Indian J Nat Prod Resour 2011; 2(4): 395-402.
Mahmoudvand H, Ezzatkhah F, Sharififar F, Sharifi I, Dezaki ES. Antileishmanial and cytotoxic effects of essential oil and methanolic extract of Myrtus communis L. Korean J Parasitol 2015; 53(1): 21-7.
[] [PMID: 25748705]
Clarkson C, Maharaj VJ, Crouch NR, et al. In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa. J Ethnopharmacol 2004; 92(2-3): 177-91.
[] [PMID: 15137999]
Okokon JE, Dar A, Iqbal Choudhary M. Immunomodulatory, Cytotoxic and Antileishmanial Activity of Setaria Megaphylla. Int J Phytomed 2012; 4(2): 155-61.
Santos FM, Pinto JEBP, Bertolucci SKV, et al. Chemical composition and antimicrobial activity of the essential oil from the leaves and flowers of Aloysia gratissima. Acta Hortic 2016; (1125): 215-22.
Garcia MCF, Soares DC, Santana RC, et al. The in vitro antileishmanial activity of essential oil from Aloysia gratissima and guaiol, its major sesquiterpene against Leishmania amazonensis. Parasitology 2018; 145(9): 1219-27.
[] [PMID: 29352826]
Aguiar LP, De Figueiredo RW, Alves RE, Maia GA, De Souza VAB. Physical and physico-chemical characterization of fruits from different genotypes of bacuri (Platonia Insignis Mart.). Food Sci Technol (Campinas) 2008; 28(2): 423-8.
Souza AC, Alves MMM, Brito LM, et al. Platonia insignis Mart., a Brazilian Amazonian Plant: The Stem Barks Extract and Its Main Constituent Lupeol Exert Antileishmanial Effects Involving Macrophages Activation. Evid Based Complement Alternat Med 2017; 2017: 1-12.
[] [PMID: 28852412]
Santos DO, Coutinho CER, Madeira MF, et al. Leishmaniasis treatment-a challenge that remains: a review. Parasitol Res 2008; 103(1): 1-10.
[] [PMID: 18389282]
Riezk A, Raynes JG, Yardley V, Murdan S, Croft SL. Activity of chitosan and its derivatives against leishmania major and leishmania mexicana in vitro. Antimicrob Agents Chemother 2020; 64(3): e01772-19.
[] [PMID: 31871082]
Eweis M, Elkholy SS, Elsabee MZ. Antifungal efficacy of chitosan and its thiourea derivatives upon the growth of some sugar-beet pathogens. Int J Biol Macromol 2006; 38(1): 1-8.
[] [PMID: 16413607]
Mohebali M, Esboei BR, Mousavi P, Fakhar M, Akhoundi B. Potent antileishmanial activity of chitosan against Iranian strain of Leishmania major (MRHO/IR/75/ER): In vitro and in vivo assay. J Vector Borne Dis 2018; 55(2): 111-5.
[] [PMID: 30280708]
Loiseau PM, Pomel S, Croft SL. Chitosan contribution to therapeutic and vaccinal approaches for the control of leishmaniasis. Molecules 2020; 25(18): 4123.
[] [PMID: 32916994]
Wagoner W, Hadwiger A, Kendra DF, Fristensky BW, Interaction C. No Table 1986; 1: 209-10.
Goy RC, Britto D, Assis OBG. A review of the antimicrobial activity of chitosan. Polímeros 2009; 19(3): 241-7.
Saleem K, Khursheed Z, Hano C, Anjum I, Anjum S. Applications of nanomaterials in leishmaniasis: A focus on recent advances and challenges. Nanomaterials (Basel) 2019; 9(12): 1749.
[] [PMID: 31818029]
Li X, Robinson SM, Gupta A, et al. Functional gold nanoparticles as potent antimicrobial agents against multi-drug-resistant bacteria. ACS Nano 2014; 8(10): 10682-6.
[] [PMID: 25232643]
Annaloro C, Olivares C, Usardi P, et al. Retrospective evaluation of amphotericin B deoxycholate toxicity in a single centre series of haematopoietic stem cell transplantation recipients. J Antimicrob Chemother 2009; 63(3): 625-6.
[] [PMID: 19158110]
Chávez-fumagalli MA, Valadares DG, Lage PS, et al. Novel targeting using nanoparticles: an approach to the development of an effective anti-leishmanial drug-delivery system. Int J Nanomedicine 2014; 9: 877-90.
Noruzi M, Zare D, Davoodi D. A rapid biosynthesis route for the preparation of gold nanoparticles by aqueous extract of cypress leaves at room temperature. Spectrochim Acta A Mol Biomol Spectrosc 2012; 94: 84-8.
[] [PMID: 22522293]
Lima DS, Gullon B, Cardelle-Cobas A, et al. Chitosan-based silver nanoparticles: A study of the antibacterial, antileishmanial and cytotoxic effects. J Bioact Compat Polym 2017; 32(4): 397-410.
Patel PA, Patravale VB. AmbiOnp: solid lipid nanoparticles of amphotericin B for oral administration. J Biomed Nanotechnol 2011; 7(5): 632-9.
[] [PMID: 22195480]
Jain V, Gupta A, Pawar VK, et al. Chitosan-assisted immunotherapy for intervention of experimental leishmaniasis via amphotericin B-loaded solid lipid nanoparticles. Appl Biochem Biotechnol 2014; 174(4): 1309-30.
[] [PMID: 25106894]
Goyal R, Macri LK, Kaplan HM, Kohn J. Nanoparticles and nanofibers for topical drug delivery. J Control Release 2016; 240: 77-92.
[] [PMID: 26518723]
Nguyen TTT, Chung OH, Park JS. Coaxial electrospun poly(lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity. Carbohydr Polym 2011; 86(4): 1799-806.
Bahraminegad S, Pardakhty A, Sharifi I, Ranjbar M. Therapeutic effects of the as-synthesized polylactic acid/chitosan nanofibers decorated with amphotricin B for in vitro treatment of Leishmaniasis. J Saudi Chem Soc 2021; 25(11): 101362.
Hasheminejad N, Khodaiyan F, Safari M. Improving the antifungal activity of clove essential oil encapsulated by chitosan nanoparticles. Food Chem 2019; 275: 113-22.
[] [PMID: 30724177]
Desbrières J, Rinaudo M, Babak V, Vikhoreva G. Surface activity of water soluble amphiphilic chitin derivatives. Polym Bull 1997; 39(2): 209-15.
Karam TK, Ortega S, Ueda Nakamura T, Auzély-Velty R, Nakamura CV. Development of chitosan nanocapsules containing essential oil of Matricaria chamomilla L. for the treatment of cutaneous leishmaniasis. Int J Biol Macromol 2020; 162: 199-208.
[] [PMID: 32565304]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy