Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Review Article

Current Market Potential and Prospects of Copper-based Pyridine Derivatives: A Review

Author(s): Shivani Tyagi, Rakhi Mishra*, Rupa Mazumder and Avijit Mazumder

Volume 24, Issue 9, 2024

Published on: 27 September, 2023

Page: [1111 - 1123] Pages: 13

DOI: 10.2174/1566524023666230726160056

Price: $65

Abstract

Nicotine, minodronic acid, nicotinamide (niacin), zolpidem, zolimidine, and other pyridine-based chemicals play vital roles in medicine and biology. Pyridinecontaining drugs are widely available on the market to treat a wide range of human ailments. As a result of these advances, pyridine research is continually expanding, and there are now higher expectations for how it may aid in the treatment of numerous ailments. This evaluation incorporates data acquired from sources, like PubMed, to provide a thorough summary of the approved drugs and bioactivity data for compounds containing pyridine. Most of the reactions discussed in this article will provide readers with a deeper understanding of various pyridine-related examples, which is necessary for the creation of copper catalysis-based synthetic processes that are more accessible, secure, environmentally friendly, and practical, and that also have higher accuracy and selectivity. This paper also discusses significant innovations in the multi-component copper-catalyzed synthesis of N-heterocycles (pyridine), with the aim of developing precise, cost-effective, and environmentally friendly oxygenation and oxidation synthetic methods for the future synthesis of additional novel pyridine base analogs. Therefore, the review article will serve as a novel platform for researchers investigating copperbased pyridine compounds.

Keywords: Pyridine, copper-based, heterocycles, synthetic, commercial, N-heterocycles.

[1]
Gros P, Fort Y. nBuLi/lithium aminoalkoxide aggregates: New and promising lithiating agents for pyridine derivatives. Eur J Org Chem 2002; 2002(20): 3375-83.
[http://dx.doi.org/10.1002/1099-0690(200210)2002:20<3375:AID-EJOC3375>3.0.CO;2-X]
[2]
Tseberlidis G, Intrieri D, Caselli A. Catalytic applications of pyridine-containing macrocyclic complexes. Eur J Inorg Chem 2017; 2017(30): 3589-603.
[http://dx.doi.org/10.1002/ejic.201700633]
[3]
Gokul V, Devadiga D, Ahipa TN. Pyridine based mechano-chromic compounds: An overview. Dyes Pigments 2021; 195: 109692.
[http://dx.doi.org/10.1016/j.dyepig.2021.109692]
[4]
Vessally E, Hosseinian A, Edjlali L, Bekhradnia A, Esrafili MD. New page to access pyridine derivatives: Synthesis from N-propargylamines. RSC Advances 2016; 6(75): 71662-75.
[http://dx.doi.org/10.1039/C6RA08720E]
[5]
Kaur N. Microwave-assisted synthesis of fused polycyclic six-membered N-heterocycles. Synth Commun 2015; 45(3): 273-99.
[http://dx.doi.org/10.1080/00397911.2013.816735]
[6]
Thenarukandiyil R, Choudhury J. Rhodium(III)-catalyzed activation and functionalization of pyridine C–H bond by exploring a unique double role of “N-heterocyclic carbene–pyridyl” ligand platform. Organometallics 2015; 34(10): 1890-7.
[http://dx.doi.org/10.1021/acs.organomet.5b00157]
[7]
Oka S, Hsu CP, Sadoshima J. Regulation of cell survival and death by pyridine nucleotides. Circ Res 2012; 111(5): 611-27.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.247932] [PMID: 22904041]
[8]
Devadiga D, Ahipa TN. Recent synthetic advances in pyridine-based thermotropic mesogens. RSC Advances 2019; 9(40): 23161-228.
[http://dx.doi.org/10.1039/C9RA04389F] [PMID: 35514516]
[9]
Mohammadi Ziarani G, Kheilkordi Z, Mohajer F, Badiei A, Luque R. Magnetically recoverable catalysts for the preparation of pyridine derivatives: An overview. RSC Advances 2021; 11(28): 17456-77.
[http://dx.doi.org/10.1039/D1RA02418C] [PMID: 35479731]
[10]
Lewis JC, Bergman RG, Ellman JA. Direct functionalization of nitrogen heterocycles via Rh-catalyzed C-H bond activation. Acc Chem Res 2008; 41(8): 1013-25.
[http://dx.doi.org/10.1021/ar800042p] [PMID: 18616300]
[11]
Puttreddy R, Rautiainen JM, Mäkelä T, Rissanen K, Strong N. Strong N−X⋅⋅⋅O−N halogen bonds: A comprehensive study on n halosaccharin pyridine N-oxide complexes. Angew Chem Int Ed 2019; 58(51): 18610-8.
[http://dx.doi.org/10.1002/anie.201909759] [PMID: 31613414]
[12]
Guin A, Bhattacharjee S, Biju AT. Transition-metal-free C2-functionalization of pyridines through aryne three-component coupling. Chemistry 2021; 27(55): 13864-9.
[http://dx.doi.org/10.1002/chem.202102005] [PMID: 34288154]
[13]
Lewis DE. Aleksei Yevgen’evich Chichibabin (1871–1945): A century of pyridine chemistry. Angew Chem Int Ed 2017; 56(33): 9660-8.
[http://dx.doi.org/10.1002/anie.201611724] [PMID: 28605569]
[14]
Vallejo MCS, Reis MJA, Pereira AMVM, et al. Merging pyridine(s) with porphyrins and analogues: An overview of synthetic approaches. Dyes Pigments 2021; 191: 109298.
[http://dx.doi.org/10.1016/j.dyepig.2021.109298]
[15]
Hill MD. Recent strategies for the synthesis of pyridine derivatives. Chemistry 2010; 16(40): 12052-62.
[http://dx.doi.org/10.1002/chem.201001100] [PMID: 20827696]
[16]
Schlosser M, Mongin F. Pyridine elaboration through organometallic intermediates: Regiochemical control and completeness. Chem Soc Rev 2007; 36(7): 1161-72.
[http://dx.doi.org/10.1039/b706241a] [PMID: 17576483]
[17]
Jumde RP, Lanza F, Pellegrini T, Harutyunyan SR. Highly enantioselective catalytic synthesis of chiral pyridines. Nat Commun 2017; 8(1): 2058.
[http://dx.doi.org/10.1038/s41467-017-01966-7] [PMID: 29233959]
[18]
Kwong H, Yeung H, Yeung C, Lee W, Lee C, Wong W. Chiral pyridine-containing ligands in asymmetric catalysis. Coord Chem Rev 2007; 251(17-20): 2188-222.
[http://dx.doi.org/10.1016/j.ccr.2007.03.010]
[19]
Jiao L, Zhou F-Y. Recent developments in transition-metal-free functionalization and derivatization reactions of pyridines. Synlett 2021; 32(2): 159-78.
[http://dx.doi.org/10.1055/s-0040-1706552]
[20]
Desai NC, Somani H, Trivedi A, et al. Synthesis, biological evaluation and molecular docking study of some novel indole and pyridine based 1,3,4-oxadiazole derivatives as potential antitubercular agents. Bioorg Med Chem Lett 2016; 26(7): 1776-83.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.043] [PMID: 26920799]
[21]
Comins DL, Higuchi K, Young DW. Dihydropyridine preparation and application in the synthesis of pyridine derivatives. Adv Heterocycl Chem 2013; 110: 175-235.
[http://dx.doi.org/10.1016/B978-0-12-408100-0.00006-9]
[22]
Lin SX, Curtis MA, Sperry J. Pyridine alkaloids with activity in the central nervous system. Bioorg Med Chem 2020; 28(24): 115820.
[http://dx.doi.org/10.1016/j.bmc.2020.115820] [PMID: 33120080]
[23]
Wahlberg G, Adamson U, Svensson J. Pyridine nucleotides in glucose metabolism and diabetes: A review. Diabetes Metab Res Rev 2000; 16(1): 33-42.
[http://dx.doi.org/10.1002/(SICI)1520-7560(200001/02)16:1<33:AID-DMRR79>3.0.CO;2-S] [PMID: 10707037]
[24]
Tahir T, Ashfaq M, Saleem M, et al. Pyridine scaffolds, phenols and derivatives of azo moiety: Current therapeutic perspectives. Molecules 2021; 26(16): 4872.
[http://dx.doi.org/10.3390/molecules26164872] [PMID: 34443460]
[25]
Ling Y, Hao ZY, Liang D, Zhang CL, Liu YF, Wang Y. The expanding role of pyridine and dihydropyridine scaffolds in drug design. Drug Des Devel Ther 2021; 15: 4289-338.
[http://dx.doi.org/10.2147/DDDT.S329547] [PMID: 34675489]
[26]
Maezono SMB, Kim SH, Lee YR. Copper-catalyzed [3 + 2 + 1] annulation for functionalized pyridines as potent and dynamic UV absorbers. Org Chem Front 2018; 5(23): 3368-73.
[http://dx.doi.org/10.1039/C8QO00782A]
[27]
Reddy KRSK, Sreedhar I, Raghavan KV. Interrelationship of process parameters in vapor phase pyridine synthesis. Appl Catal A Gen 2008; 339(1): 15-20.
[http://dx.doi.org/10.1016/j.apcata.2008.01.004]
[28]
Gujjarappa R, Vodnala N, Malakar CC. Recent advances in pyridine-based organocatalysis and its application towards valuable chemical transformations. ChemistrySelect 2020; 5(28): 8745-58.
[http://dx.doi.org/10.1002/slct.202002765]
[29]
Che YY, Yue Y, Lin LZ, Pei B, Deng X, Feng C. Palladium catalyzed electrophilic functionalization of pyridine derivatives through phosphonium salts. Angew Chem Int Ed 2020; 59(38): 16414-9.
[http://dx.doi.org/10.1002/anie.202006724] [PMID: 32533596]
[30]
Gandioso A, El Fakiri M, Rovira A, Marchán V. A simple method for the synthesis of N -difluoromethylated pyridines and 4-pyridones/quinolones by using BrCF 2 COOEt as the difluoromethylation reagent. RSC Advances 2020; 10(50): 29829-34.
[http://dx.doi.org/10.1039/D0RA06322C] [PMID: 35518226]
[31]
Eldehna WM, Hassan GS, Al-Rashood ST, et al. Synthesis and in vitro anticancer activity of certain novel 1-(2-methyl-6-arylpyridin-3-yl)-3-phenylureas as apoptosis-inducing agents. J Enzyme Inhib Med Chem 2019; 34(1): 322-32.
[http://dx.doi.org/10.1080/14756366.2018.1547286] [PMID: 30722708]
[32]
Bakhite EA, Abd-Ella AA, El-Sayed MEA, Abdel-Raheem SAA. Pyridine derivatives as insecticides. Part 2: Synthesis of some piperidinium and morpholinium cyanopyridinethiolates and their insecticidal activity. J Saudi Chem Soc 2017; 21(1): 95-104.
[http://dx.doi.org/10.1016/j.jscs.2016.02.005]
[33]
Timmins GS, Master S, Rusnak F, Deretic V. Nitric oxide generated from isoniazid activation by KatG: Source of nitric oxide and activity against Mycobacterium tuberculosis. Antimicrob Agents Chemother 2004; 48(8): 3006-9.
[http://dx.doi.org/10.1128/AAC.48.8.3006-3009.2004] [PMID: 15273113]
[34]
Forde PM, Rudin CM. Crizotinib in the treatment of non-small-cell lung cancer. Expert Opin Pharmacother 2012; 13(8): 1195-201.
[http://dx.doi.org/10.1517/14656566.2012.688029] [PMID: 22594847]
[35]
Verma C, Rhee KY, Quraishi MA, Ebenso EE. Pyridine based N-heterocyclic compounds as aqueous phase corrosion inhibitors: A review. J Taiwan Inst Chem Eng 2020; 117: 265-77.
[http://dx.doi.org/10.1016/j.jtice.2020.12.011]
[36]
Kumar R, Thorat SH, Reddy MS. Cu-Catalyzed iminative hydroolefination of unactivated alkynes en route to 4-imino-tetrahydropyridines and 4-aminopyridines. Chem Commun 2016; 52(92): 13475-8.
[http://dx.doi.org/10.1039/C6CC08081B] [PMID: 27790654]
[37]
Knochel P, Diène C. Preparation of functionalized Zn and Mg-organometallics. Application to the performance of diastereoselective cross-couplings. C R Chim 2011; 14(9): 842-50.
[http://dx.doi.org/10.1016/j.crci.2011.07.002]
[38]
Mignani S, Shi X, Steinmetz A, Majoral JP. Multivalent copper (II)-conjugated phosphorus dendrimers with noteworthy in vitro and in vivo antitumor activities: A concise overview. Mol Pharm 2021; 18(1): 65-73.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00892] [PMID: 33236637]
[39]
Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. 3d transition metals for C–H activation. Chem Rev 2019; 119(4): 2192-452.
[http://dx.doi.org/10.1021/acs.chemrev.8b00507] [PMID: 30480438]
[40]
Abdel-Raheem SA, El-Dean AM, Zaki RM, et al. Synthesis and toxicological studies on distyryl-substituted heterocyclic insecticides. Eur Chem Bull 2021; 10: 225.
[41]
Abdel-Raheem SA, El-Dean AMK, Abdul-Malik MA, et al. Facile synthesis and pesticidal activity of substituted heterocyclic pyridine compounds. Rev Roum Chim 2022; 67(4-5): 305-9.
[42]
Abdel-Raheem SAA, El-Dean AMK, Hassanien R, El-Sayed MEA, Abd-Ella AA. Synthesis and characterization of some distyryl-derivatives for agricultural uses. Eur Chem Bull 2021; 10(1): 35-8.
[http://dx.doi.org/10.17628/ecb.2021.10.35-38]
[43]
Abdel-Raheem SAA, El-Dean AMK, ul-Malik MAA, et al. Synthesis of new distyrylpyridine analogues bearing amide substructure as effective insecticidal agents. Current Chemistry Letters 2022; 11(1): 23-8.
[http://dx.doi.org/10.5267/j.ccl.2021.10.001]
[44]
Abdel-Raheem SAA, El-Dean AMK, ul-Malik MAA, et al. A concise review on some synthetic routes and applications of pyridine scaffold compounds. Current Chemistry Letters 2021; 10(4): 337-62.
[http://dx.doi.org/10.5267/j.ccl.2021.7.001]
[45]
Gad MA, Aref SA, Abdelhamid AA, Elwassimy MM, Abdel-Raheem SAA. Biologically active organic compounds as insect growth regulators (IGRs): Introduction, mode of action, and some synthetic methods. Current Chemistry Letters 2021; 10(4): 393-412.
[http://dx.doi.org/10.5267/j.ccl.2021.5.004]
[46]
Abdel-Raheem SAA, El-Dean AMK, Hassanien R, El-Sayed MEA, Sayed M, Abd-Ella AA. Synthesis and spectral characterization of selective pyridine compounds as bioactive agents. Current Chemistry Letters 2021; 10(3): 255-60.
[http://dx.doi.org/10.5267/j.ccl.2021.2.001]
[47]
Gros PC, Fort Y. Combinations of alkyllithiums and lithium aminoalkoxides for generation of functional pyridine organometallics and derivatives. Eur J Org Chem 2009; 2009(25): 4199-209.
[http://dx.doi.org/10.1002/ejoc.200900324]
[48]
Sharma R, Sharma U. Remote C-H bond activation/transformations: A continuous growing synthetic tool; Part II. Catal Rev, Sci Eng 2018; 60(4): 497-565.
[http://dx.doi.org/10.1080/01614940.2018.1474538]
[49]
Jaric M, Haag BA, Unsinn A, Karaghiosoff K, Knochel P. Highly selective metalations of pyridines and related heterocycles using new frustrated Lewis pairs or tmp-zinc and tmp-magnesium bases with BF3.OEt2. Angew Chem Int Ed 2010; 49(32): 5451-5.
[http://dx.doi.org/10.1002/anie.201002031] [PMID: 20818766]
[50]
Jaric M, Haag BA, Manolikakes SM, Knochel P. Selective and multiple functionalization of pyridines and alkaloids via Mg- and Zn-organometallic intermediates. Org Lett 2011; 13(9): 2306-9.
[http://dx.doi.org/10.1021/ol200563j] [PMID: 21462960]
[51]
Tilly D, Chevallier F, Mongin F, Gros PC. Bimetallic combinations for dehalogenative metalation involving organic compounds. Chem Rev 2014; 114(2): 1207-57.
[http://dx.doi.org/10.1021/cr400367p] [PMID: 24187937]
[52]
Ping L, Chung DS, Bouffard J, Lee S. Transition metal-catalyzed site- and regio-divergent C–H bond functionalization. Chem Soc Rev 2017; 46(14): 4299-328.
[http://dx.doi.org/10.1039/C7CS00064B] [PMID: 28537608]
[53]
Urankar D, Pinter B, Pevec A, De Proft F, Turel I, Košmrlj J. Click-triazole N2 coordination to transition-metal ions is assisted by a pendant pyridine substituent. Inorg Chem 2010; 49(11): 4820-9.
[http://dx.doi.org/10.1021/ic902354e] [PMID: 20441174]
[54]
Sieh D, Schlimm M, Andernach L, et al. Metal–ligand electron transfer in 4d and 5d group 9 transition metal complexes with pyridine, diimine ligands. Eur J Inorg Chem 2012; 2012(3): 444-62.
[http://dx.doi.org/10.1002/ejic.201101072]
[55]
Yao B, Liu Y, Zhao L, Wang DX, Wang MX. Designing a Cu(II)-ArCu(II)-ArCu(III)-Cu(I) catalytic cycle: Cu(II)-catalyzed oxidative arene C-H bond azidation with air as an oxidant under ambient conditions. J Org Chem 2014; 79(22): 11139-45.
[http://dx.doi.org/10.1021/jo502115a] [PMID: 25350606]
[56]
Hirano K, Miura M. Copper-mediated oxidative direct C–C (hetero)aromatic cross-coupling. Chem Commun 2012; 48(87): 10704-14.
[http://dx.doi.org/10.1039/c2cc34659a] [PMID: 22991692]
[57]
Varela JA, Saá C. Construction of pyridine rings by metal-mediated [2 + 2 + 2] cycloaddition. Chem Rev 2003; 103(9): 3787-802.
[http://dx.doi.org/10.1021/cr030677f] [PMID: 12964884]
[58]
Guo XX, Gu DW, Wu Z, Zhang W. Copper-catalyzed C-H functionalization reactions: Efficient synthesis of heterocycles. Chem Rev 2015; 115(3): 1622-51.
[http://dx.doi.org/10.1021/cr500410y] [PMID: 25531056]
[59]
Li J, Wäckerlin C, Schnidrig S, Joliat E, Alberto R, Ernst KH. On-surface metalation and 2D self-assembly of pyrphyrin molecules into metal-coordinated networks on Cu(111). Helv Chim Acta 2017; 100(1): e1600278.
[http://dx.doi.org/10.1002/hlca.201600278]
[60]
Trammell R, Rajabimoghadam K, Garcia-Bosch I. Copper-promoted functionalization of organic molecules: From biologically relevant Cu/O2 model systems to organometallic transformations. Chem Rev 2019; 119(4): 2954-3031.
[http://dx.doi.org/10.1021/acs.chemrev.8b00368] [PMID: 30698952]
[61]
Jeganmohan M, Knochel P. tmp(4)Zr: An atom-economical base for the metalation of functionalized arenes and heteroarenes. Angew Chem Int Ed 2010; 49(45): 8520-4.
[http://dx.doi.org/10.1002/anie.201003558] [PMID: 20839204]
[62]
Tajbakhsh M, Farhang M, Hosseinzadeh R, Sarrafi Y. Nano Fe3O4 supported biimidazole Cu(i) complex as a retrievable catalyst for the synthesis of imidazo[1,2-a]pyridines in aqueous medium. RSC Advances 2014; 4(44): 23116-24.
[http://dx.doi.org/10.1039/c4ra03333g]
[63]
Milstein D. Discovery of environmentally benign catalytic reactions of alcohols catalyzed by pyridine-based pincer Ru complexes, based on metal–ligand cooperation. Top Catal 2010; 53(13-14): 915-23.
[http://dx.doi.org/10.1007/s11244-010-9523-7]
[64]
Wunderlich SH, Kienle M, Knochel P. Directed manganation of functionalized arenes and heterocycles using tmp2Mn x 2 MgCl2 x 4 LiCl. Angew Chem Int Ed 2009; 48(39): 7256-60.
[http://dx.doi.org/10.1002/anie.200903505] [PMID: 19718739]
[65]
Zafar MN, Atif AH, Nazar MF, Sumrra SH. Gul-E-Saba, Paracha R. Pyridine and related ligands in transition metal homogeneous catalysis. Russ J Coord Chem 2016; 42(1): 1-18.
[http://dx.doi.org/10.1134/S1070328416010097]
[66]
Maccari R, Ottanà R, Bottari B, Rotondo E, Vigorita MG. In vitro advanced antimycobacterial screening of cobalt(II) and copper(II) complexes of fluorinated isonicotinoylhydrazones. Bioorg Med Chem Lett 2004; 14(23): 5731-3.
[http://dx.doi.org/10.1016/j.bmcl.2004.09.052] [PMID: 15501030]
[67]
Khan E. Pyridine derivatives as biologically active precursors; organics and selected coordination complexes. ChemistrySelect 2021; 6(13): 3041-64.
[http://dx.doi.org/10.1002/slct.202100332]
[68]
Peloquin AJ, Houck MB, McMillen CD, Iacono ST, Pennington WT. Perfluoropyridine as an efficient, tunable scaffold for bis (pyrazol-1-yl) pyridine copper complexes. Eur J Inorg Chem 2020; 2020(18): 1720-7.
[http://dx.doi.org/10.1002/ejic.202000150]
[69]
Wang J, Ba D, Yang M, Cheng G, Wang L. Regioselective synthesis of 2, 4-diaryl-6-trifluoromethylated pyridines through copper-catalyzed cyclization of CF3-ynones and vinyl azides. J Org Chem 2021; 86(9): 6423-32.
[http://dx.doi.org/10.1021/acs.joc.1c00275] [PMID: 33905254]
[70]
Samanta S, Hajra A. Regioselective synthesis of unsymmetrical biheteroaryls via copper(ii)-catalyzed cascade annulation. Chem Commun 2018; 54(27): 3379-82.
[http://dx.doi.org/10.1039/C8CC00671G] [PMID: 29547223]
[71]
Saini HK, Kaswan P, Pericherla K, Kumar A. Synthesis of Naphtho-Fused Imidazo[1,2- a]pyridines through Copper-Catalyzed Cascade Reactions. Asian J Org Chem 2015; 4(12): 1380-5.
[http://dx.doi.org/10.1002/ajoc.201500297]
[72]
Bagdi AK, Santra S, Monir K, Hajra A. Synthesis of imidazo[1,2-a]pyridines: A decade update. Chem Commun 2015; 51(9): 1555-75.
[http://dx.doi.org/10.1039/C4CC08495K] [PMID: 25407981]
[73]
Niu B, You C, Huang B, Cai M. Heterogeneous copper-catalyzed three-component reaction of 2-aminopyridines, acetophenones and benzyl cyanide towards 3-cyanoimidazo[1,2-a]pyridines. Catal Commun 2019; 123: 11-6.
[http://dx.doi.org/10.1016/j.catcom.2019.01.025]
[74]
Wu Y, Li L, Wen K, et al. Copper-Catalyzed C-3 Functionalization of Imidazo[1,2- a]pyridines with 3-Indoleacetic Acids. J Org Chem 2021; 86(17): 12394-402.
[http://dx.doi.org/10.1021/acs.joc.1c01371] [PMID: 34387491]
[75]
Yu J, Jin Y, Zhang H, Yang X, Fu H. Copper-catalyzed aerobic oxidative C-H functionalization of substituted pyridines: Synthesis of imidazopyridine derivatives. Chemistry 2013; 19(49): 16804-8.
[http://dx.doi.org/10.1002/chem.201302737] [PMID: 24151176]
[76]
Naeemah AL, Salom KJ. Synthesis and biological activity evaluation of new imidazo and bis imidazo (1,2-A) pyridine derivatives. J Glob Pharma Technol 2018; 11(1): 603-10.
[77]
Konwar D, Bora U. Recent developments in transition metal catalyzed regioselective functionalization of imidazo[1, 2- a]pyridine. ChemistrySelect 2021; 6(11): 2716-44.
[http://dx.doi.org/10.1002/slct.202100144]
[78]
Kishore BN, Unyala R, Begum A, Hepsibha C, Madhava B, Reddy V. Synthesis, Characterization of Some Novel Pyrazoline incorporated Imidazo[1, 2-a]pyridines for anti-inflammatory and anti-bacterial activities. Pharma Chem 2017; 9: 45-9.
[79]
Bagdi AK, Rahman M, Santra S, Majee A, Hajra A. Copper-catalyzed synthesis of imidazo[1,2- a]pyridines through tandem imine formation-oxidative cyclization under ambient air: One-step synthesis of zolimidine on a gram-scale. Adv Synth Catal 2013; 355(9): 1741-7.
[http://dx.doi.org/10.1002/adsc.201300298]
[80]
Yu Y, Su Z, Cao H. Strategies for Synthesis of Imidazo[1,2- a]pyridine Derivatives: Carbene Transformations or C-H Functionalizations. Chem Rec 2019; 19(10): 2105-18.
[http://dx.doi.org/10.1002/tcr.201800168] [PMID: 30592370]
[81]
Krause M, Foks H, Gobis K. Pharmacological potential and synthetic approaches of imidazo[4, 5-b]pyridine and imidazo[4, 5-c] pyridine derivatives. Molecules 2017; 22(3): 399.
[http://dx.doi.org/10.3390/molecules22030399] [PMID: 28273868]
[82]
Tulloch AAD, Danopoulos AA, Kleinhenz S, Light ME, Hursthouse MB, Eastham G. Structural diversity in pyridine-N-functionalized carbene copper (I) complexes. Organometallics 2001; 20(10): 2027-31.
[http://dx.doi.org/10.1021/om010014t]
[83]
Fairoosa J, Neetha M, Anilkumar G. Recent developments and perspectives in the copper-catalyzed multicomponent synthesis of heterocycles. RSC Advances 2021; 11(6): 3452-69.
[http://dx.doi.org/10.1039/D0RA10472H] [PMID: 35424324]
[84]
Altaf AA, Shahzad A, Gul Z, et al. A review on the medicinal importance of pyridine derivatives. J Drug Des Med Chem 2015; 1(1): 1-1.
[85]
Trujillo JI. MEK inhibitors: A patent review 2008 – 2010. Expert Opin Ther Pat 2011; 21(7): 1045-69.
[http://dx.doi.org/10.1517/13543776.2011.577068] [PMID: 21548849]
[86]
Mahapatra DK, Asati V, Bharti SK. MEK inhibitors in oncology: A patent review (2015-Present). Expert Opin Ther Pat 2017; 27(8): 887-906.
[http://dx.doi.org/10.1080/13543776.2017.1339688] [PMID: 28594589]
[87]
Price S. Putative allosteric MEK1 and MEK2 inhibitors. Expert Opin Ther Pat 2008; 18(6): 603-27.
[http://dx.doi.org/10.1517/13543776.18.6.603]
[88]
Zhao Y, Adjei AA. The clinical development of MEK inhibitors. Nat Rev Clin Oncol 2014; 11(7): 385-400.
[http://dx.doi.org/10.1038/nrclinonc.2014.83] [PMID: 24840079]
[89]
Zambon A, Niculescu-Duvaz D, Niculescu-Duvaz I, Marais R, Springer CJ. BRAF as a therapeutic target: A patent review (2006 – 2012). Expert Opin Ther Pat 2013; 23(2): 155-64.
[http://dx.doi.org/10.1517/13543776.2013.741593] [PMID: 23294221]
[90]
Kettle JG, Åstrand A, Catley M, et al. Inhibitors of JAK-family kinases: An update on the patent literature 2013-2015, part 2. Expert Opin Ther Pat 2017; 27(2): 145-61.
[http://dx.doi.org/10.1080/13543776.2017.1252754] [PMID: 27774822]
[91]
Kiss R, Sayeski PP, Keserű GM. Recent developments on JAK2 inhibitors: A patent review. Expert Opin Ther Pat 2010; 20(4): 471-95.
[http://dx.doi.org/10.1517/13543771003639436] [PMID: 20205617]
[92]
Tresadern G, Cid JM, Trabanco AA. QSAR design of triazolopyridine mGlu2 receptor positive allosteric modulators. J Mol Graph Model 2014; 53: 82-91.
[http://dx.doi.org/10.1016/j.jmgm.2014.07.006] [PMID: 25086773]
[93]
Trabanco AA, Bartolomé JM, Cid JM. mGluR2 positive allosteric modulators: An updated patent review (2013–2018). Expert Opin Ther Pat 2019; 29(7): 497-507.
[http://dx.doi.org/10.1080/13543776.2019.1637421] [PMID: 31242055]
[94]
Trabanco AA, Cid JM. mGluR2 positive allosteric modulators: A patent review (2009 – present). Expert Opin Ther Pat 2013; 23(5): 629-47.
[http://dx.doi.org/10.1517/13543776.2013.777043] [PMID: 23452205]
[95]
Abdel-Magid AF. Allosteric modulators: An emerging concept in drug discovery. ACS Med Chem Lett 2015; 6(2): 104-7.
[http://dx.doi.org/10.1021/ml5005365] [PMID: 25699154]
[96]
Engers JL, Childress ES, Long MF, et al. VU6007477, a novel M1 PAM based on a Pyrrolo[2, 3-b]pyridine carboxamide core devoid of cholinergic adverse events. ACS Med Chem Lett 2018; 9(9): 917-22.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00261] [PMID: 30258541]
[97]
Chen H, Terrett JA. Transient receptor potential ankyrin 1 (TRPA1) antagonists: A patent review (2015–2019). Expert Opin Ther Pat 2020; 30(9): 643-57.
[http://dx.doi.org/10.1080/13543776.2020.1797679] [PMID: 32686526]
[98]
Lawhorn BG, Brnardic EJ, Behm DJ. TRPV4 antagonists: A patent review (2015–2020). Expert Opin Ther Pat 2021; 31(9): 773-84.
[http://dx.doi.org/10.1080/13543776.2021.1903432] [PMID: 33724130]
[99]
Fischer C. A patent review of apelin receptor (APJR) modulators (2014-2019). Expert Opin Ther Pat 2020; 30(4): 251-61.
[http://dx.doi.org/10.1080/13543776.2020.1731473] [PMID: 32066307]
[100]
Tahirovic YA, Pelly S, Jecs E, et al. Small molecule and peptide-based CXCR4 modulators as therapeutic agents. A patent review for the period from 2010 to 2018. Expert Opin Ther Pat 2020; 30(2): 87-101.
[http://dx.doi.org/10.1080/13543776.2020.1707186] [PMID: 31854208]
[101]
Heukers R, De Groof TWM, Smit MJ. Nanobodies detecting and modulating GPCRs outside in and inside out. Curr Opin Cell Biol 2019; 57: 115-22.
[http://dx.doi.org/10.1016/j.ceb.2019.01.003] [PMID: 30849632]
[102]
Li Z, Zhou Z, Zhang L. Current status of GPR40/FFAR1 modulators in medicinal chemistry (2016–2019): A patent review. Expert Opin Ther Pat 2020; 30(1): 27-38.
[http://dx.doi.org/10.1080/13543776.2020.1698546] [PMID: 31771391]
[103]
Read C, Nyimanu D, Williams TL, et al. International union of basic and clinical pharmacology. CVII. Structure and pharmacology of the apelin receptor with a recommendation that elabela/toddler is a second endogenous peptide ligand. Pharmacol Rev 2019; 71(4): 467-502.
[http://dx.doi.org/10.1124/pr.119.017533] [PMID: 31492821]
[104]
Ruzza C, Calò G, Di Maro S, et al. Neuropeptide S receptor ligands: A patent review (2005-2016). Expert Opin Ther Pat 2017; 27(3): 347-62.
[http://dx.doi.org/10.1080/13543776.2017.1254195] [PMID: 27788040]
[105]
Ravotto L, Duffet L, Zhou X, Weber B, Patriarchi T. A bright and colorful future for G-protein coupled receptor sensors. Front Cell Neurosci 2020; 14: 67.
[http://dx.doi.org/10.3389/fncel.2020.00067] [PMID: 32265667]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy