Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Quinoline and Analogs: Insight into the Synthesis, Biological Activity, Structure-Activity Relationship, and Interaction with Targets

Author(s): Upendra Kumar, Rajnish Kumar*, Avijit Mazumder, Salahuddin, Himanshu Singh, Ranjit Kumar Yadav and Greesh Kumar

Volume 21, Issue 8, 2024

Published on: 21 June, 2023

Page: [862 - 890] Pages: 29

DOI: 10.2174/1570193X20666230505152611

Price: $65

Abstract

Quinoline and its derivatives have been utilized and marketed as antibacterial, antimalarial, anticancer, hypertension, asthma (COPD), etc. The diverse pharmacological properties of quinolone are related to its chemical structure. Nowadays, it is common practice to combine at least two pharmacophores to create a single molecule with powerful pharmacological effects. This helps to synergize pharmacological qualities, enables interaction with several targets, or lessens the negative effects related to them. Various synthetic approaches which have been used in recent times for the synthesis of quinoline and its derivatives are listed in the manuscript with their merits and demerit. The structure-activity relationship relating various pharmacological actions with molecular structure and interaction with several targets has also been highlighted to provide a good comprehension to the researchers for future studies on quinoline.

Keywords: Heterocyclic, quinoline, synthetic approaches, pharmacological activity, structure-activity relationship, target interaction.

Graphical Abstract
[1]
Jain, S.; Chandra, V.; Kumar Jain, P.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab. J. Chem., 2019, 12(8), 4920-4946.
[http://dx.doi.org/10.1016/j.arabjc.2016.10.009]
[2]
Orhan Püsküllü, M.; Tekiner, B.; Suzen, S. Recent studies of antioxidant quinoline derivatives. Mini Rev. Med. Chem., 2013, 13(3), 365-372.
[http://dx.doi.org/10.2174/138955713804999793] [PMID: 23190035]
[3]
Rajesh, Y.B. Quinoline heterocycles: Synthesis and bioactivity. Heterocycl Synth Bio Acty, 2018, 19, 1-18.
[http://dx.doi.org/10.5772/intechopen.81239]
[4]
Solomon, V.R.; Lee, H. Quinoline as a privileged scaffold in cancer drug discovery. Curr. Med. Chem., 2011, 18(10), 1488-1508.
[http://dx.doi.org/10.2174/092986711795328382] [PMID: 21428893]
[5]
Yadav, P.; Shah, K. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry. Bioorg. Chem., 2021, 109, 104639.
[http://dx.doi.org/10.1016/j.bioorg.2021.104639] [PMID: 33618829]
[6]
Marella, A.; Tanwar, O.P.; Saha, R.; Ali, M.R.; Srivastava, S.; Akhter, M.; Shaquiquzzaman, M.; Alam, M.M. Quinoline: A versatile heterocyclic. Saudi Pharm. J., 2013, 21(1), 1-12.
[http://dx.doi.org/10.1016/j.jsps.2012.03.002] [PMID: 23960814]
[7]
Luo, Y.; Yue, X.; Wei, P.; Zhou, A.; Kong, X.; Alimzhanova, S. A state-of-the-art review of quinoline degradation and technical bottlenecks. Sci. Total Environ., 2020, 747, 141136.
[http://dx.doi.org/10.1016/j.scitotenv.2020.141136] [PMID: 32777494]
[8]
Kouznetsov, V.; Méndez, L.; Gómez, C. Recent progress in the synthesis of quinolines. Curr. Org. Chem., 2005, 9(2), 141-161.
[http://dx.doi.org/10.2174/1385272053369196]
[9]
Gu, W.; Jin, X.Y.; Li, D.D.; Wang, S.F.; Tao, X.B.; Chen, H. Design, synthesis and in vitro anticancer activity of novel quinoline and oxadiazole derivatives of ursolic acid. Bioorg. Med. Chem. Lett., 2017, 27(17), 4128-4132.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.033] [PMID: 28733083]
[10]
Czaplinska, B.; Spaczynska, E.; Musiol, R. Quinoline fluorescent probes for zinc–from diagnostic to therapeutic molecules in treating neurodegenerative diseases. Med. Chem., 2018, 14(1), 19-33.
[http://dx.doi.org/10.2174/1573406413666171002121817] [PMID: 28969572]
[11]
Kumar, H.; Devaraji, V.; Joshi, R.; Jadhao, M.; Ahirkar, P.; Prasath, R.; Bhavana, P.; Ghosh, S.K. Antihypertensive activity of a quinoline appended chalcone derivative and its site specific binding interaction with a relevant target carrier protein. RSC Advances, 2015, 5(80), 65496-65513.
[http://dx.doi.org/10.1039/C5RA08778C]
[12]
Yang, X.H.; Xiao, G.M.; Wang, Z.M.; Zhou, Y.H.; Feng, G.D. Antihypertensive evaluation of lignin related high-added-value 4-aryl-hexahydroquinolines. Adv. Mat. Res., 2012, 581-582, 7-10.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.581-582.7]
[13]
de la Guardia, C.; Stephens, D.; Dang, H.; Quijada, M.; Larionov, O.; Lleonart, R. Antiviral activity of novel quinoline derivatives against dengue virus serotype 2. Molecules, 2018, 23(3), 672.
[http://dx.doi.org/10.3390/molecules23030672] [PMID: 29547522]
[14]
Wang, M.; Zhang, G.; Zhao, J.; Cheng, N.; Wang, Y.; Fu, Y.; Zheng, Y.; Wang, J.; Zhu, M.; Cen, S.; He, J.; Wang, Y. Synthesis and antiviral activity of a series of novel quinoline derivatives as anti-RSV or anti-IAV agents. Eur. J. Med. Chem., 2021, 214, 113208.
[http://dx.doi.org/10.1016/j.ejmech.2021.113208] [PMID: 33571829]
[15]
Bhat, A.R.; Tazeem; Azam, A.; Choi, I.; Athar, F. 3-(1,3,4-Thiadiazole-2-yl)quinoline derivatives: Synthesis, characterization and anti-microbial activity. Eur. J. Med. Chem., 2011, 46(7), 3158-3166.
[http://dx.doi.org/10.1016/j.ejmech.2011.04.013] [PMID: 21530014]
[16]
Mubeen, S.; Rauf, A.; Qureshi, A.M. Synthesis of new quinoline scaffolds via a solvent-free fusion method and their anti-microbial properties. Trop. J. Pharm. Res., 2018, 17(9), 1853-1858.
[http://dx.doi.org/10.4314/tjpr.v17i9.25]
[17]
Sharma, R.; Kour, P.; Kumar, A. A review on transition-metal mediated synthesis of quinolines. J. Chem. Sci., 2018, 130(6), 73.
[http://dx.doi.org/10.1007/s12039-018-1466-8]
[18]
Afzal, O.; Kumar, S.; Haider, M.R.; Ali, M.R.; Kumar, R.; Jaggi, M.; Bawa, S. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem., 2015, 97, 871-910.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.044] [PMID: 25073919]
[19]
Mohamed, M.F.A.; Abuo-Rahma, G.E.D.A. Molecular targets and anticancer activity of quinoline–chalcone hybrids: Literature review. RSC Advances, 2020, 10(52), 31139-31155.
[http://dx.doi.org/10.1039/D0RA05594H] [PMID: 35520674]
[20]
Nqoro, X.; Tobeka, N.; Aderibigbe, B. Quinoline-based hybrid compounds with antimalarial activity. Molecules, 2017, 22(12), 2268.
[http://dx.doi.org/10.3390/molecules22122268] [PMID: 29257067]
[21]
Pretorius, S.I.; Breytenbach, W.J.; de Kock, C.; Smith, P.J.; N’Da, D.D. Synthesis, characterization and antimalarial activity of quinoline–pyrimidine hybrids. Bioorg. Med. Chem., 2013, 21(1), 269-277.
[http://dx.doi.org/10.1016/j.bmc.2012.10.019] [PMID: 23168082]
[22]
Uddin, A.; Chawla, M.; Irfan, I.; Mahajan, S.; Singh, S.; Abid, M. Medicinal chemistry updates on quinoline- and endoperoxide-based hybrids with potent antimalarial activity. RSC Med. Chem., 2021, 12(1), 24-42.
[http://dx.doi.org/10.1039/D0MD00244E] [PMID: 34046596]
[23]
Paloque, L.; Hemmert, C.; Valentin, A.; Gornitzka, H. Synthesis, characterization, and antileishmanial activities of gold(I) complexes involving quinoline functionalized N-heterocyclic carbenes. Eur. J. Med. Chem., 2015, 94, 22-29.
[http://dx.doi.org/10.1016/j.ejmech.2015.02.046] [PMID: 25747497]
[24]
Costa, C.A.; Lopes, R.M.; Ferraz, L.S.; Esteves, G.N.N.; Di Iorio, J.F.; Souza, A.A.; de Oliveira, I.M.; Manarin, F.; Judice, W.A.S.; Stefani, H.A.; Rodrigues, T. Cytotoxicity of 4-substituted quinoline derivatives: Anticancer and antileishmanial potential. Bioorg. Med. Chem., 2020, 28(11), 115511.
[http://dx.doi.org/10.1016/j.bmc.2020.115511] [PMID: 32336669]
[25]
Tejería, A.; Pérez-Pertejo, Y.; Reguera, R.M.; Carbajo-Andrés, R.; Balaña-Fouce, R.; Alonso, C.; Martin-Encinas, E.; Selas, A.; Rubiales, G.; Palacios, F. Antileishmanial activity of new hybrid tetrahydroquinoline and quinoline derivatives with phosphorus substituents. Eur. J. Med. Chem., 2019, 162, 18-31.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.065] [PMID: 30408746]
[26]
Wen, X.; Wang, S.B.; Liu, D.C.; Gong, G.H.; Quan, Z.S. Synthesis and evaluation of the anti-inflammatory activity of quinoline derivatives. Med. Chem. Res., 2015, 24(6), 2591-2603.
[http://dx.doi.org/10.1007/s00044-015-1323-y]
[27]
Abdelrahman, M.H.; Youssif, B.G.M.; abdelgawad, M.A.; Abdelazeem, A.H.; Ibrahim, H.M.; Moustafa, A.E.G.A.; Treamblu, L.; Bukhari, S.N.A. Synthesis, biological evaluation, docking study and ulcerogenicity profiling of some novel quinoline-2-carboxamides as dual COXs/LOX inhibitors endowed with anti-inflammatory activity. Eur. J. Med. Chem., 2017, 127, 972-985.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.006] [PMID: 27837994]
[28]
Ghate, N.B.; Chaudhuri, D.; Panja, S.; Singh, S.S.; Gupta, G.; Lee, C.Y.; Mandal, N. In vitro mechanistic study of the anti-inflammatory activity of a quinoline isolated from Spondias pinnata Bark. J. Nat. Prod., 2018, 81(9), 1956-1961.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00036] [PMID: 30215255]
[29]
Douadi, K.; Chafaa, S.; Douadi, T.; Al-Noaimi, M.; Kaabi, I. Azoimine quinoline derivatives: Synthesis, classical and electrochemical evaluation of antioxidant, anti-inflammatory, antimicrobial activities and the DNA / BSA binding. J. Mol. Struct., 2020, 1217, 128305.
[http://dx.doi.org/10.1016/j.molstruc.2020.128305]
[30]
Zeleke, D.; Eswaramoorthy, R.; Belay, Z.; Melaku, Y. Synthesis and antibacterial, antioxidant, and molecular docking analysis of some novel quinoline derivatives. J. Chem., 2020, 2020, 1-16.
[http://dx.doi.org/10.1155/2020/1324096]
[31]
Chabukswar, A.R.; Kuchekar, B.S.; Jagdale, S.C.; Lokhande, P.D.; Chabukswar, V.V.; Shisodia, S.U.; Mahabal, R.H.; Londhe, A.M.; Ojha, N.S. Synthesis and evaluation of analgesic, anti-asthmatic activity of (E)-1-(8-hydroxyquinolin-7-yl)-3-phenylprop-2-en-1 ones. Arab. J. Chem., 2016, 9(5), 704-712.
[http://dx.doi.org/10.1016/j.arabjc.2014.10.046]
[32]
Gaurav, A.; Singh, R. Pharmacophore modeling, 3DQSAR, and docking-based design of polysubstituted quinolines derivatives as inhibitors of phosphodiesterase 4, and preliminary evaluation of their anti-asthmatic potential. Med. Chem. Res., 2014, 23(12), 5008-5030.
[http://dx.doi.org/10.1007/s00044-014-1048-3]
[33]
Rajanarendar, E.; Nagi Reddy, M.; Rama Krishna, S.; Rama Murthy, K.; Reddy, Y.N.; Rajam, M.V. Design, synthesis, antimicrobial, anti-inflammatory and analgesic activity of novel isoxazolyl pyrimido[4,5-b]quinolines and isoxazolyl chromeno[2,3-d]pyrimidin-4-ones. Eur. J. Med. Chem., 2012, 55, 273-283.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.029] [PMID: 22846796]
[34]
García, A.; Bocanegra-García, V.; Palma-Nicolás, J.P.; Rivera, G. Recent advances in antitubercular natural products. Eur. J. Med. Chem., 2012, 49, 1-23.
[http://dx.doi.org/10.1016/j.ejmech.2011.12.029] [PMID: 22280816]
[35]
Das, B.; Krishnaiah, M.; Venkateswarlu, K.; Das, R. Camptothecins: Some recent chemical studies. Nat. Prod. Commun., 2006, 1, 1934578X0600100313.
[http://dx.doi.org/10.1177/1934578X0600100313]
[36]
Akkachairin, B.; Rodphon, W.; Reamtong, O.; Mungthin, M.; Tummatorn, J.; Thongsornkleeb, C.; Ruchirawat, S. Synthesis of neocryptolepines and carbocycle-fused quinolines and evaluation of their anticancer and antiplasmodial activities. Bioorg. Chem., 2020, 98, 103732.
[http://dx.doi.org/10.1016/j.bioorg.2020.103732] [PMID: 32171989]
[37]
Das, S.; Das, M.K.; Das, R.; Gehlot, V.; Mahant, S.; Mazumder, P.M.; Das, S.; Falls, N.; Kumar, V. Isolation, characterization of Berberine from Berberis aristata DC for eradication of resistant Helicobacter pylori. Biocatal. Agric. Biotechnol., 2020, 26, 101622.
[http://dx.doi.org/10.1016/j.bcab.2020.101622]
[38]
Zielińska, S.; Wójciak-Kosior, M.; Dziągwa-Becker, M.; Gleńsk, M.; Sowa, I.; Fijałkowski, K.; Rurańska-Smutnicka, D.; Matkowski, A.; Junka, A. The activity of isoquinoline alkaloids and extracts from Chelidonium majus against pathogenic bacteria and Candida sp. Toxins, 2019, 11(7), 406.
[http://dx.doi.org/10.3390/toxins11070406] [PMID: 31336994]
[39]
Shang, X.F.; Morris-Natschke, S.L.; Liu, Y.Q.; Guo, X.; Xu, X.S.; Goto, M.; Li, J.C.; Yang, G.Z.; Lee, K.H. Biologically active quinoline and quinazoline alkaloids part I. Med. Res. Rev., 2018, 38(3), 775-828.
[http://dx.doi.org/10.1002/med.21466] [PMID: 28902434]
[40]
Miao, F.; Yang, X.J.; Zhou, L.; Hu, H.J.; Zheng, F.; Ding, X.D.; Sun, D.M.; Zhou, C.D.; Sun, W. Structural modification of sanguinarine and chelerythrine and their antibacterial activity. Nat. Prod. Res., 2011, 25(9), 863-875.
[http://dx.doi.org/10.1080/14786419.2010.482055] [PMID: 21491327]
[41]
Hu, Y.Q.; Gao, C.; Zhang, S.; Xu, L.; Xu, Z.; Feng, L.S.; Wu, X.; Zhao, F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2017, 139, 22-47.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.061] [PMID: 28800458]
[42]
Nayak, N.; Ramprasad, J.; Dalimba, U. Synthesis and antitubercular and antibacterial activity of some active fluorine containing quinoline–pyrazole hybrid derivatives. J. Fluor. Chem., 2016, 183, 59-68.
[http://dx.doi.org/10.1016/j.jfluchem.2016.01.011]
[43]
Bingul, M.; Tan, O.; Gardner, C.; Sutton, S.; Arndt, G.; Marshall, G.; Cheung, B.; Kumar, N.; Black, D. Synthesis, characterization and anti-cancer activity of hydrazide derivatives incorporating a quinoline moiety. Molecules, 2016, 21(7), 916.
[http://dx.doi.org/10.3390/molecules21070916] [PMID: 27428941]
[44]
Tang, Q.; Xu, Z.; Jin, M.; Shu, T.; Chen, Y.; Feng, L.; Zhang, Q.; Lan, K.; Wu, S.; Zhou, H.B. Identification of dibucaine derivatives as novel potent enterovirus 2C helicase inhibitors: In vitro, in vivo, and combination therapy study. Eur. J. Med. Chem., 2020, 202, 112310.
[http://dx.doi.org/10.1016/j.ejmech.2020.112310] [PMID: 32619885]
[45]
Sutherland, H.S.; Tong, A.S.T.; Choi, P.J.; Blaser, A.; Conole, D.; Franzblau, S.G.; Lotlikar, M.U.; Cooper, C.B.; Upton, A.M.; Denny, W.A.; Palmer, B.D. 3,5-Dialkoxypyridine analogues of bedaquiline are potent antituberculosis agents with minimal inhibition of the hERG channel. Bioorg. Med. Chem., 2019, 27(7), 1292-1307.
[http://dx.doi.org/10.1016/j.bmc.2019.02.026] [PMID: 30803745]
[46]
de los Ríos, C.; Marco-Contelles, J. Tacrines for Alzheimer’s disease therapy. III. The PyridoTacrines. Eur. J. Med. Chem., 2019, 166, 381-389.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.005] [PMID: 30739821]
[47]
Catapano, A.L. Pitavastatin: A different pharmacological profile. Clin. Lipidol., 2012, 7(sup1), 3-9.
[http://dx.doi.org/10.2217/clp.12.21]
[48]
Sun, Y.; Lu, X.; Gai, Y.; Sha, C.; Leng, G.; Yang, X.; Liu, W. LCMS/MS method for the determination of the prodrug aripiprazole lauroxil and its three metabolites in plasma and its application to in vitro biotransformation and animal pharmacokinetic studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2018, 1081-1082, 67-75.
[http://dx.doi.org/10.1016/j.jchromb.2018.02.011] [PMID: 29510329]
[49]
Soares, R.R.; Razeghinejad, M.R. Efficacy of the combination of carteolol hydrochloride + latanoprost in the treatment of glaucoma and ocular hypertension. Expert Opin. Pharmacother., 2018, 19(15), 1731-1738.
[http://dx.doi.org/10.1080/14656566.2018.1518432] [PMID: 30295543]
[50]
Cazzola, M.; Calzetta, L.; Page, C.P.; Matera, M.G. Use of indacaterol for the treatment of COPD: A pharmacokinetic evaluation. Expert Opin. Drug Metab. Toxicol., 2014, 10(1), 129-137.
[http://dx.doi.org/10.1517/17425255.2014.865723] [PMID: 24295085]
[51]
Pandeya, S.N.; Tyagi, A. Synthetic approaches for quinoline and isoquinoline. ChemInform, 2012, 43(3)
[http://dx.doi.org/10.1002/chin.201203240]
[52]
Li, JJ Conrad-Limpach reaction.Name Reactions; Berlin, Heidelberg: Springer, 2006.
[http://dx.doi.org/10.1007/3-540-30031-7_66]
[53]
Yamashkin, S.A.; Yudin, L.G.; Kost, A.N. Closure of the pyridine ring in the combes quinoline synthesis (Review). Chem. Heterocycl. Compd., 1992, 28(8), 845-855.
[http://dx.doi.org/10.1007/BF00531313]
[54]
Ramann, G.A.; Cowen, B.J. Quinoline synthesis by improved Skraup–Doebner–Von Miller reactions utilizing acrolein diethyl acetal. Tetrahedron Lett., 2015, 56(46), 6436-6439.
[http://dx.doi.org/10.1016/j.tetlet.2015.09.145]
[55]
Batista, V.F.; Pinto, D.C.G.A.; Silva, A.M.S. Synthesis of quinolines: A green perspective. ACS Sustain. Chem. & Eng., 2016, 4(8), 4064-4078.
[http://dx.doi.org/10.1021/acssuschemeng.6b01010]
[56]
Liu, Y.; Gao, Q.; Liu, L.; Li, S. Investigated on the Rubber Antioxidant 2,2,4-Trimethyl-1,2-dihydroquinoline Polymer. Asian J. Chem., 2013, 25(6), 2956-2958.
[http://dx.doi.org/10.14233/ajchem.2013.13073]
[57]
Ramann, G.; Cowen, B. Recent advances in metal-free quinoline synthesis. Molecules, 2016, 21(8), 986.
[http://dx.doi.org/10.3390/molecules21080986] [PMID: 27483222]
[58]
Wang, L.M.; Hu, L.; Chen, H.J.; Sui, Y.Y.; Shen, W. One-pot synthesis of quinoline-4-carboxylic acid derivatives in water: Ytterbium perfluorooctanoate catalyzed Doebner reaction. J. Fluor. Chem., 2009, 130(4), 406-409.
[http://dx.doi.org/10.1016/j.jfluchem.2009.01.002]
[59]
Li, L.H.; Niu, Z.J.; Liang, Y.M. Organocatalyzed synthesis of functionalized quinolines. Chem. Asian J., 2020, 15(2), 231-241.
[http://dx.doi.org/10.1002/asia.201901380] [PMID: 31799792]
[60]
Elghamry, I.; Al-Faiyz, Y. A simple one-pot synthesis of quinoline-4-carboxylic acids by the Pfitzinger reaction of isatin with enaminones in water. Tetrahedron Lett., 2016, 57(1), 110-112.
[http://dx.doi.org/10.1016/j.tetlet.2015.11.070]
[61]
Chelucci, G.; Porcheddu, A. Synthesis of quinolines via a metal-catalyzed dehydrogenative N-heterocyclization. Chem. Rec., 2017, 17(2), 200-216.
[http://dx.doi.org/10.1002/tcr.201600083] [PMID: 27524555]
[62]
Bharate, J.B.; Vishwakarma, R.A.; Bharate, S.B. Metal-free domino one-pot protocols for quinoline synthesis. RSC Advances, 2015, 5(52), 42020-42053.
[http://dx.doi.org/10.1039/C5RA07798B]
[63]
Mishra, S.; Salahuddin, R.K.; Majumder, A.; Kumar, A.; Singh, C.; Tiglani, D. Updates on synthesis and biological activities of quinoline derivatives: A review. Int. J. Pharma. Res., 2021, 13(1)
[http://dx.doi.org/10.31838/ijpr/2021.13.01.472]
[64]
Li, J.J. Camps quinoline synthesis. Name Reactions; Springer: Berlin, Heidelberg, 2009, pp. 92-93.
[http://dx.doi.org/10.1007/978-3-642-01053-8_44]
[65]
Dekamin, M.G.; Karimi, Z.; Latifidoost, Z.; Ilkhanizadeh, S.; Daemi, H.; Naimi-Jamal, M.R.; Barikani, M. Alginic acid: A mild and renewable bifunctional heterogeneous biopolymeric organocatalyst for efficient and facile synthesis of polyhydroquinolines. Int. J. Biol. Macromol., 2018, 108, 1273-1280.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.050] [PMID: 29137997]
[66]
Saggadi, H.; Luart, D.; Thiebault, N.; Polaert, I.; Estel, L.; Len, C. Toward the synthesis of 6-hydroxyquinoline starting from glycerol via improved microwave-assisted modified Skraup reaction. Catal. Commun., 2014, 44, 15-18.
[http://dx.doi.org/10.1016/j.catcom.2013.07.029]
[67]
QUINOLINE: 91-22-5; 1-Benzazine; 1-Azanaphthalene; Chinoleine; Chinolin; Chinoline; Quinolin. 2022. Available From: https://pubchem.ncbi.nlm.nih.gov/#query=quinoline&tab=patent&filters=true&grantdate_gte=2018&grantdate_lte=2022
[68]
QUINOLINE: 91-22-5; 1-Benzazine; 1-Azanaphthalene; Chinoleine; Chinolin; Chinoline; Quinolin. 2022. Available From: https://pubchem.ncbi.nlm.nih.gov/#query=quinoline&tab=pubmed&filters=true&articlepubdate_gte=2018
[69]
Halfon, P.; Bassissi, F.; Brun, S.; Courcambeck, J.; Rachid, M. Substituted 2,4 diamino-quinoline as new medicament for fibrosis, Autophagy flux and Cathepsins B(CTSB), L(CTSL), and D(CTSD) related diseases. US11261189, 2022.
[70]
Griebenow, N.; Zhuang, W.; Kulke, D.; Bohm, C.; Schwarz, H.G.; Hiibsch, W. Quinoline derivatives for treating infections with helminths. U.S. Patent 11254661, 2022.
[71]
Fan, J.; Qian, Y.; He, W.; Liu, K. Substituted quinoline-8- carbonitrile derivatives having androgen receptor degradation activity and uses thereof. EP3795570, 2022.
[72]
Quaranta, L. Microbiocidal quinoline (thio) carboxamide derivatives. EP3601228, 2022.
[73]
Chappie, T.A.; Galatsis, P.; Garnsey, M.R.; Helal, C.J.; Henderson, J.L.; Kormos, B.L.; Kurumbail, R.G.; Martinez-Alsina, L.A.; Pettersson, M.Y.; Stepan, A.F.; Wager, T.T. Cyclic substituted imidazo[ 4,5-C]quinoline derivatives. EP3592740, 2022.
[74]
Griesgraber, G.W.; Paul, S. Amide substituted imidazo[4,5- C]quinoline compounds with a branched chain linking group for use an immune response modifier. EP3728255, 2022.
[75]
Kumar, V.S.; Hesson, D.P.; Huang, P.; Jia, M.; You, X. Compositions and methods for inhibiting dihydroorotate dehydrogenase. US11230528, 2022.
[76]
Neamati, N.; Jin, Y.; Lin, J. Small molecule inhibitors of myc and uses thereof. US11214567, 2022.
[77]
Liu, J.; Liu, Q.; Wu, Y.; Wang, B.; Qi, Z.; Zou, F.; Liu, Q.; Wang, W.; Chen, C.; Wang, J.; Wang, L. Pan-KIT kinase inhibitor having quinoline structure and application thereof. AU2018453128, 2022.
[78]
Tazi, J.; Najman, R.; Mahuteau, F.; Scherrer, D.; Hahne, M.; Chebli, K. Quinoline derivatives for the treatment of Inflammatory diseases. EP3169328, 2022.
[79]
Schmidt, A.M.; Ramasamy, R.; Shekhtman, A.; Rai, V.; Manigrasso, M.B. Quinoline compounds as modulators of rage activity and uses thereof. US11192859, 2021.
[80]
Miranker, A.; Kumar, S. Quinoline amides and methods of using same. US11135213, 2021.
[81]
Sabelle, S.; Fadli, A. Use for dyeing keratin fibers of a compound of azomethine type bearing a quinoline-derived unit. US11117864, 2021.
[82]
Scherrer, D.; Garcel, A.; Campos, N.; Tazi, J.; Vautrin, A.; Mahuteau, F.; Najman, R.; Fornarelli, P. Quinoline derivatives for use in the treatment or prevention of viral infection. ES2882542, 2021.
[83]
Jones, K.; Cheeseman, M.D. Deuterated N-(5-(2,3- dihydobenzo[B][1,4]dioxine-6-carboxamido)-2-fluorophenyl)-2- ((4-ethylpiperazin-1-yl)methyl)quinoline-6-carboxamide. EP3523295, 2021.
[84]
Praveen, C.; DheenKumar, P.; Muralidharan, D.; Perumal, P.T. Synthesis, antimicrobial and antioxidant evaluation of quinolines and bis(indolyl)methanes. Bioorg. Med. Chem. Lett., 2010, 20(24), 7292-7296.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.075] [PMID: 21071222]
[85]
Ma, N.; Lu, H.; Wu, F.; Zhang, G.; Jiang, B.; Shi, F.; Gao, Y.; Tu, S. Green chemistry approach to the synthesis of 2-aryl-4-ferrocenyl-quinoline derivatives under microwave irradiation. J. Heterocycl. Chem., 2011, 48(4), 803-807.
[http://dx.doi.org/10.1002/jhet.594]
[86]
Chaudhuri, M.K.; Hussain, S. An efficient synthesis of quinolines under solvent-free conditions. J. Chem. Sci., 2006, 118(2), 199-202.
[http://dx.doi.org/10.1007/BF02708474]
[87]
Prajapati, S.M.; Patel, K.D.; Vekariya, R.H.; Panchal, S.N.; Patel, H.D. Recent advances in the synthesis of quinolines: A review. RSC Advances, 2014, 4(47), 24463-24476.
[http://dx.doi.org/10.1039/C4RA01814A]
[88]
Yu, Y.; Tu, M.S.; Jiang, B.; Wang, S.L.; Tu, S.J. Multicomponent synthesis of polysubstituted dihydroquinoline derivatives. Tetrahedron Lett., 2012, 53(38), 5071-5075.
[http://dx.doi.org/10.1016/j.tetlet.2012.07.008]
[89]
Fedoseev, P.; Van der Eycken, E. Temperature switchable Brønsted acid-promoted selective syntheses of spiro-indolenines and quinolines. Chem. Commun., 2017, 53(55), 7732-7735.
[http://dx.doi.org/10.1039/C7CC02580G] [PMID: 28492644]
[90]
Khusnutdinov, R.I.; Bayguzina, A.R.; Dzhemilev, U.M. Metal complex catalysis in the synthesis of quinolines. J. Organomet. Chem., 2014, 768, 75-114.
[http://dx.doi.org/10.1016/j.jorganchem.2014.06.008]
[91]
Venkanna, A.; Swapna, K.; Rao, P.V. Recyclable nano copper oxide catalyzed synthesis of quinoline-2,3-dicarboxylates under ligand free conditions. RSC Advances, 2014, 4(29), 15154-15160.
[http://dx.doi.org/10.1039/c3ra47212d]
[92]
Kumar, G.S.; Kumar, P.; Kapur, M. Traceless directing-group strategy in the Ru-catalyzed, formal [3+ 3] annulation of anilines with allyl alcohols: A one-pot, domino approach for the synthesis of quinolines. Org. Lett., 2017, 19(10), 2494-2497.
[http://dx.doi.org/10.1021/acs.orglett.7b00715] [PMID: 28448156]
[93]
Ali, S.; Khan, A.T. Metal-free synthesis of quinoline-2,4-dicarboxylate derivatives using aryl amines and acetylenedicarboxylates through a pseudo three-component reaction. Org. Biomol. Chem., 2021, 19(32), 7041-7050.
[http://dx.doi.org/10.1039/D1OB01188J] [PMID: 34341812]
[94]
Mäkelä, M.K.; Bulatov, E.; Malinen, K.; Talvitie, J.; Nieger, M.; Melchionna, M.; Lenarda, A.; Hu, T.; Wirtanen, T.; Helaja, J. Carbocatalytic cascade synthesis of polysubstituted quinolines from aldehydes and 2‐vinyl anilines. Adv. Synth. Catal., 2021, 363(15), 3775-3782.
[http://dx.doi.org/10.1002/adsc.202100711]
[95]
Carral-Menoyo, A.; Sotomayor, N.; Lete, E. Palladium-catalysed Heck-type alkenylation reactions in the synthesis of quinolines. Mechanistic insights and recent applications. Catal. Sci. Technol., 2020, 10(16), 5345-5361.
[http://dx.doi.org/10.1039/D0CY00789G]
[96]
Chakraborty, G.; Sikari, R.; Das, S.; Mondal, R.; Sinha, S.; Banerjee, S.; Paul, N.D. Dehydrogenative synthesis of quinolines, 2-aminoquinolines, and quinazolines using singlet diradical Ni (II)-catalysts. J. Org. Chem., 2019, 84(5), 2626-2641.
[http://dx.doi.org/10.1021/acs.joc.8b03070] [PMID: 30685972]
[97]
Thigulla, Y.; Kumar, T.U.; Trivedi, P.; Ghosh, B.; Bhattacharya, A. One-step synthesis of fused chromeno[4,3-b]pyrrolo[3,2- h]quinolin-7(1H)-one compounds and their anticancer activity evaluation. ChemistrySelect, 2017, 2(9), 2718-2721.
[http://dx.doi.org/10.1002/slct.201700129]
[98]
Peng, F.; Liu, J.; Li, L.; Chen, Z. Copper-catalyzed tandem reaction of enamino esters with ortho-halogenated aromatic carbonyls: one-pot approach to functionalized quinolines. Eur. J. Org. Chem., 2018, 2018(5), 666-672.
[http://dx.doi.org/10.1002/ejoc.201701472]
[99]
Jin, H.; Tian, B.; Song, X.; Xie, J.; Rudolph, M.; Rominger, F.; Hashmi, A.S.K. Gold-catalyzed synthesis of quinolines from propargyl silyl ethers and anthranils through the umpolung of a gold carbene carbon. Angew. Chem. Int. Ed., 2016, 55(41), 12688-12692.
[http://dx.doi.org/10.1002/anie.201606043] [PMID: 27629266]
[100]
Dhiman, S.; Saini, H.K.; Nandwana, N.K.; Kumar, D.; Kumar, A. Copper-catalyzed synthesis of quinoline derivatives via tandem Knoevenagel condensation, amination and cyclization. RSC Advances, 2016, 6(29), 23987-23994.
[http://dx.doi.org/10.1039/C6RA03798D]
[101]
Wang, T.L.; Liu, X.J.; Huo, C.D.; Wang, X.C.; Quan, Z.J. Base-catalyzed thio-lactamization of 2-(1-arylvinyl)anilines with CS 2 for the synthesis of quinoline-2-thiones. Chem. Commun., 2018, 54(5), 499-502.
[http://dx.doi.org/10.1039/C7CC07633A] [PMID: 29261206]
[102]
Choi, J.H.; Park, C.M. Three-component synthesis of quinolines based on radical cascade visible-light photoredox catalysis. Adv. Synth. Catal., 2018, 360(18), 3553-3562.
[http://dx.doi.org/10.1002/adsc.201800734]
[103]
Shushizadeh, M.R.; Mostoufi, A.; Behfar, A.; Heidary, M. 1,7-Sigmatropic rearrangement in 1,2-dihydro and 1,2,3,4-tetrahydroquinoline synthesis using marine sponge/H2C2O4 as a catalyst. Arab. J. Chem., 2015, 8(6), 868-872.
[http://dx.doi.org/10.1016/j.arabjc.2012.06.007]
[104]
Guo, B.; Yu, T.Q.; Li, H.X.; Zhang, S.Q.; Braunstein, P.; Young, D.J.; Li, H.Y.; Lang, J.P. Phosphine ligand‐free ruthenium complexes as efficient catalysts for the synthesis of quinolines and pyridines by acceptorless dehydrogenative coupling reactions. Chem‐CatChem, 2019, 11(10), 2500-2510.
[http://dx.doi.org/10.1002/cctc.201900435]
[105]
Ruch, S.; Irrgang, T.; Kempe, R. New iridium catalysts for the selective alkylation of amines by alcohols under mild conditions and for the synthesis of quinolines by acceptor-less dehydrogenative condensation. Chemistry, 2014, 20(41), 13279-13285.
[http://dx.doi.org/10.1002/chem.201402952] [PMID: 25186522]
[106]
Reddy, S.S.; Reddy, M.V.K.; Reddy, P.V. β-Cyclodextrin in water: as an efficient green protocol for the synthesis of pyrimido[4, 5- b]quinoline-diones. ChemistrySelect, 2018, 3(16), 4283-4288.
[http://dx.doi.org/10.1002/slct.201800208]
[107]
Ortiz-Cervantes, C.; Flores-Alamo, M.; García, J.J. Synthesis of pyrrolidones and quinolines from the known biomass feedstock levulinic acid and amines. Tetrahedron Lett., 2016, 57(7), 766-771.
[http://dx.doi.org/10.1016/j.tetlet.2016.01.018]
[108]
Nasseri, M.A.; Zakerinasab, B.; Samieadel, M.M. Sulfamic acid supported on Fe 3 O 4 @SiO 2 superpara magnetic nanoparticles as a recyclable heterogeneous catalyst for the synthesis of quinolines. RSC Advances, 2014, 4(79), 41753-41762.
[http://dx.doi.org/10.1039/C4RA06699E]
[109]
Kumar, R.; Kumar, I.; Sharma, R.; Sharma, U. Catalyst and solvent-free alkylation of quinoline N-oxides with olefins: A direct access to quinoline-substituted α-hydroxy carboxylic derivatives. Org. Biomol. Chem., 2016, 14(9), 2613-2617.
[http://dx.doi.org/10.1039/C5OB02600H] [PMID: 26846299]
[110]
Xu, H.; Li, L.; Dai, L.; Mao, K.; Kou, W.; Lin, C.; Rong, L. The efficient in‐situ reduction and cyclization reaction of aromatic aldehyde, 1,3‐cyclopentanedione (tetronic acid), and nitro‐compound under SnCl 2 ·2H 2 O‐THF medium. Appl. Organomet. Chem., 2018, 32(3), e4194.
[http://dx.doi.org/10.1002/aoc.4194]
[111]
Plaskon, A.S.; Ryabukhin, S.V.; Volochnyuk, D.M.; Gavrilenko, K.S.; Shivanyuk, A.N.; Tolmachev, A.A. Synthesis of quinolines from 3-formylchromone. J. Org. Chem., 2008, 73(15), 6010-6013.
[http://dx.doi.org/10.1021/jo800950y] [PMID: 18593188]
[112]
Huo, Z.; Gridnev, I.D.; Yamamoto, Y. A method for the synthesis of substituted quinolines via electrophilic cyclization of 1-azido-2-(2-propynyl)benzene. J. Org. Chem., 2010, 75(4), 1266-1270.
[http://dx.doi.org/10.1021/jo902603v] [PMID: 20099928]
[113]
Teja, C.; Khan, F.R.N. Radical transformations towards the synthesis of quinoline: A review. Chem. Asian J., 2020, 15(24), 4153-4167.
[http://dx.doi.org/10.1002/asia.202001156] [PMID: 33135361]
[114]
Mekheimer, R.A.; Al-Sheikh, M.A.; Medrasi, H.Y.; Sadek, K.U. Advancements in the synthesis of fused tetracyclic quinoline derivatives. RSC Advances, 2020, 10(34), 19867-19935.
[http://dx.doi.org/10.1039/D0RA02786C] [PMID: 35520416]
[115]
Tufail, F.; Saquib, M.; Singh, S.; Tiwari, J.; Singh, M.; Singh, J.; Singh, J.; New, J. Bioorganopromoted green Friedländer synthesis: A versatile new malic acid promoted solvent free approach to multisubstituted quinolines. New J. Chem., 2017, 41(4), 1618-1624.
[http://dx.doi.org/10.1039/C6NJ03907C]
[116]
Rodrigo, E.; Baunis, H.; Suna, E.; Waldvogel, S.R. Simple and scalable electrochemical synthesis of 2,1-benzisoxazoles and quinoline N -oxides. Chem. Commun., 2019, 55(81), 12255-12258.
[http://dx.doi.org/10.1039/C9CC06054E] [PMID: 31555778]
[117]
Weyesa, A.; Mulugeta, E. Recent advances in the synthesis of biologically and pharmaceutically active quinoline and its analogues: A review. RSC Advances, 2020, 10(35), 20784-20793.
[http://dx.doi.org/10.1039/D0RA03763J] [PMID: 35517753]
[118]
Liu, G.; Yi, M.; Liu, L.; Wang, J.; Wang, J. An atom economical method for the direct synthesis of quinoline derivatives from substituted o-nitrotoluenes. Chem. Commun., 2015, 51(14), 2911-2914.
[http://dx.doi.org/10.1039/C4CC09358E] [PMID: 25584394]
[119]
Bao, L.; Liu, J.; Xu, L.; Hu, Z.; Xu, X. Divergent synthesis of quinoline derivatives via [5+1] annulation of 2-isocyanochalcones with nitroalkanes. Adv. Synth. Catal., 2018, 360(9), 1870-1875.
[http://dx.doi.org/10.1002/adsc.201800152]
[120]
Kumar, V.; Gohain, M.; Van Tonder, J.H.; Ponra, S.; Bezuindenhoudt, B.C.B.; Ntwaeaborwa, O.M.; Swart, H.C. Synthesis of quinoline based heterocyclic compounds for blue lighting application. Opt. Mater., 2015, 50, 275-281.
[http://dx.doi.org/10.1016/j.optmat.2015.11.009]
[121]
Bhat, S.I.; Choudhury, A.R.; Trivedi, D.R. Condensation of malononitrile with salicylaldehydes and o-aminobenzaldehydes revisited: Solvent and catalyst free synthesis of 4H-chromenes and quinolines. RSC Advances, 2012, 2(28), 10556-10563.
[http://dx.doi.org/10.1039/c2ra21849f]
[122]
Mondal, A.; Banerjee, B.; Bhaumik, A.; Mukhopadhyay, C. Activated alumina balls under neat conditions: A green catalyst for the synthesis of spiro-heterocyclic scaffolds by ring-opening versus annulation of the isatin moiety. ChemCatChem, 2016, 8(6), 1185-1198.
[http://dx.doi.org/10.1002/cctc.201500885]
[123]
Somagond, S.M.; Kamble, R.R.; Kattimani, P.P.; Shaikh, S.K.J.; Dixit, S.R.; Joshi, S.D.; Devarajegowda, H.C. Design, Docking, and Synthesis of Quinoline-2 H -1,2,4-triazol-3(4 H)-ones as Potent Anticancer and Antitubercular Agents. ChemistrySelect, 2018, 3(7), 2004-2016.
[http://dx.doi.org/10.1002/slct.201702279]
[124]
Solomon, V.R.; Pundir, S.; Lee, H. Examination of novel 4-aminoquinoline derivatives designed and synthesized by a hybrid pharmacophore approach to enhance their anticancer activities. Sci. Rep., 2019, 9(1), 6315.
[http://dx.doi.org/10.1038/s41598-019-42816-4] [PMID: 31004122]
[125]
Viswas, R.S.; Pundir, S.; Lee, H. Design and synthesis of 4-piperazinyl quinoline derived urea/thioureas for anti-breast cancer activity by a hybrid pharmacophore approach. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 620-630.
[http://dx.doi.org/10.1080/14756366.2019.1571055] [PMID: 30727782]
[126]
Chu, X.M.; Wang, C.; Liu, W.; Liang, L.L.; Gong, K.K.; Zhao, C.Y.; Sun, K.L. Quinoline and quinolone dimers and their biological activities: An overview. Eur. J. Med. Chem., 2019, 161, 101-117.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.035] [PMID: 30343191]
[127]
Chate, A.V.; Kamdi, S.P.; Bhagat, A.N.; Jadhav, C.K.; Nipte, A.; Sarkate, A.P.; Tiwari, S.V.; Gill, C.H. Design, synthesis and SAR study of novel spiro [pyrimido[5,4-b]quinoline-10,5′-pyrrolo[2,3-d]pyrimidine] derivatives as promising anticancer agents. J. Heterocycl. Chem., 2018, 55(10), 2297-2302.
[http://dx.doi.org/10.1002/jhet.3286]
[128]
Akhter, M.; Saha, R.; Tanwar, O.; Mumtaz Alam, M.; Zaman, M.S. Synthesis and antimalarial activity of quinoline-substituted furanone derivatives and their identification as selective falcipain-2 inhibitors. Med. Chem. Res., 2015, 24(2), 879-890.
[http://dx.doi.org/10.1007/s00044-014-1139-1]
[129]
Xiao, J.; Sun, Z.; Kong, F.; Gao, F. Current scenario of ferrocene-containing hybrids for antimalarial activity. Eur. J. Med. Chem., 2020, 185, 111791.
[http://dx.doi.org/10.1016/j.ejmech.2019.111791] [PMID: 31669852]
[130]
Cheng, P.; Yang, L.; Huang, X.; Wang, X.; Gong, M. Chalcone hybrids and their antimalarial activity. Arch. Pharm., 2020, 353(4), 1900350.
[http://dx.doi.org/10.1002/ardp.201900350] [PMID: 32003489]
[131]
Chu, X.M.; Wang, C.; Wang, W.L.; Liang, L.L.; Liu, W.; Gong, K.K.; Sun, K.L. Triazole derivatives and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2019, 166, 206-223.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.047] [PMID: 30711831]
[132]
Lu, W.J.; Wicht, K.J.; Wang, L.; Imai, K.; Mei, Z.W.; Kaiser, M.; El Sayed, I.E.T.; Egan, T.J.; Inokuchi, T. Synthesis and antimalarial testing of neocryptolepine analogues: Addition of ester function in SAR study of 2,11-disubstituted indolo[2,3-b]quinolines. Eur. J. Med. Chem., 2013, 64, 498-511.
[http://dx.doi.org/10.1016/j.ejmech.2013.03.072] [PMID: 23685569]
[133]
Tanwar, B.; Kumar, A.; Yogeeswari, P.; Sriram, D.; Chakraborti, A.K. Design, development of new synthetic methodology, and biological evaluation of substituted quinolines as new anti-tubercular leads. Bioorg. Med. Chem. Lett., 2016, 26(24), 5960-5966.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.082] [PMID: 27839684]
[134]
Pandya, K.M.; Patel, A.H.; Desai, P.S. Development of antimicrobial, antimalarial and antitubercular compounds based on a quinoline-pyrazole clubbed scaffold derived via doebner reaction. Chemistry Africa, 2020, 3(1), 89-98.
[http://dx.doi.org/10.1007/s42250-019-00096-5]
[135]
Singh, S.; Kaur, G.; Mangla, V.; Gupta, M.K. Quinoline and quinolones: Promising scaffolds for future antimycobacterial agents. J. Enzyme Inhib. Med. Chem., 2015, 30(3), 492-504.
[http://dx.doi.org/10.3109/14756366.2014.930454] [PMID: 25032745]
[136]
Liu, B.; Li, F.; Zhou, T.; Tang, X.Q.; Hu, G.W. Quinoline derivatives with potential activity against multidrug-resistant tuberculosis. J. Heterocycl. Chem., 2018, 55(8), 1863-1873.
[http://dx.doi.org/10.1002/jhet.3241]
[137]
Giacobbo, B.C.; Pissinate, K.; Rodrigues-Junior, V.; Villela, A.D.; Grams, E.S.; Abbadi, B.L.; Subtil, F.T.; Sperotto, N.; Trindade, R.V.; Back, D.F.; Campos, M.M.; Basso, L.A.; Machado, P.; Santos, D.S. New insights into the SAR and drug combination synergy of 2-(quinolin-4-yloxy)acetamides against Mycobacterium tuberculosis. Eur. J. Med. Chem., 2017, 126, 491-501.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.048] [PMID: 27914363]
[138]
Eswaran, S.; Adhikari, A.V.; Pal, N.K.; Chowdhury, I.H. Design and synthesis of some new quinoline-3-carbohydrazone derivatives as potential antimycobacterial agents. Bioorg. Med. Chem. Lett., 2010, 20(3), 1040-1044.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.045] [PMID: 20056418]
[139]
Gao, F.; Wang, T.; Xiao, J.; Huang, G. Antibacterial activity study of 1,2,4-triazole derivatives. Eur. J. Med. Chem., 2019, 173, 274-281.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.043] [PMID: 31009913]
[140]
Patel, R.V.; Park, S.W. Access to a new class of biologically active quinoline based 1,2,4-triazoles. Eur. J. Med. Chem., 2014, 71, 24-30.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.059] [PMID: 24269513]
[141]
Dolan, N.; Gavin, D.P.; Eshwika, A.; Kavanagh, K.; McGinley, J.; Stephens, J.C. Synthesis, antibacterial and anti-MRSA activity, in vivo toxicity and a structure–activity relationship study of a quinoline thiourea. Bioorg. Med. Chem. Lett., 2016, 26(2), 630-635.
[http://dx.doi.org/10.1016/j.bmcl.2015.11.058] [PMID: 26639761]
[142]
Desai, N.C.; Patel, B.Y.; Dave, B.P. Synthesis and antimicrobial activity of novel quinoline derivatives bearing pyrazoline and pyridine analogues. Med. Chem. Res., 2017, 26(1), 109-119.
[http://dx.doi.org/10.1007/s00044-016-1732-6]
[143]
Suresh, N.; Nagesh, H.N.; Renuka, J.; Rajput, V.; Sharma, R.; Khan, I.A.; Kondapalli Venkata Gowri, C.S. Synthesis and evaluation of 1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxo-7-(4-(2-(4-substitutedpiperazin-1-yl)acetyl)piperazin-1-yl)quinoline-3-carboxylic acid derivatives as anti-tubercular and antibacterial agents. Eur. J. Med. Chem., 2014, 71, 324-332.
[http://dx.doi.org/10.1016/j.ejmech.2013.10.055] [PMID: 24333580]
[144]
Zhang, B. Comprehensive review on the anti-bacterial activity of 1,2,3-triazole hybrids. Eur. J. Med. Chem., 2019, 168, 357-372.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.055] [PMID: 30826511]
[145]
Upadhyay, A.; Kushwaha, P.; Gupta, S.; Dodda, R.P.; Ramalingam, K.; Kant, R.; Goyal, N.; Sashidhara, K.V. Synthesis and evaluation of novel triazolyl quinoline derivatives as potential antileishmanial agents. Eur. J. Med. Chem., 2018, 154, 172-181.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.014] [PMID: 29793211]
[146]
Almandil, N.B.; Taha, M.; Rahim, F.; Wadood, A.; Imran, S.; Alqahtani, M.A.; Bamarouf, Y.A.; Ibrahim, M.; Mosaddik, A.; Gollapalli, M. Synthesis of novel quinoline-based thiadiazole, evaluation of their antileishmanial potential and molecular docking studies. Bioorg. Chem., 2019, 85, 109-116.
[http://dx.doi.org/10.1016/j.bioorg.2018.12.025] [PMID: 30605884]
[147]
Bhat, S.Y.; Jagruthi, P.; Srinivas, A.; Arifuddin, M.; Qureshi, I.A. Synthesis and characterization of quinoline-carbaldehyde derivatives as novel inhibitors for leishmanial methionine aminopeptidase 1. Eur. J. Med. Chem., 2020, 186, 111860.
[http://dx.doi.org/10.1016/j.ejmech.2019.111860] [PMID: 31759728]
[148]
Chanquia, S.N.; Larregui, F.; Puente, V.; Labriola, C.; Lombardo, E.; García Liñares, G. Synthesis and biological evaluation of new quinoline derivatives as antileishmanial and antitrypanosomal agents. Bioorg. Chem., 2019, 83, 526-534.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.053] [PMID: 30469145]
[149]
Upadhyay, A.; Chandrakar, P.; Gupta, S.; Parmar, N.; Singh, S.K.; Rashid, M.; Kushwaha, P.; Wahajuddin, M.; Sashidhara, K.V.; Kar, S. Synthesis, biological evaluation, structure-activity relationship, and mechanism of action studies of quinoline–metronidazole derivatives against experimental visceral leishmaniasis. J. Med. Chem., 2019, 62(11), 5655-5671.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00628] [PMID: 31124675]
[150]
Grover, G.; Nath, R.; Bhatia, R.; Akhtar, M.J. Synthetic and therapeutic perspectives of nitrogen containing heterocycles as anti-convulsants. Bioorg. Med. Chem., 2020, 28(15), 115585.
[http://dx.doi.org/10.1016/j.bmc.2020.115585] [PMID: 32631563]
[151]
Song, M.X.; Deng, X.Q. Recent developments on triazole nucleus in anticonvulsant compounds: A review. J. Enzyme Inhib. Med. Chem., 2018, 33(1), 453-478.
[http://dx.doi.org/10.1080/14756366.2017.1423068] [PMID: 29383949]
[152]
Dorababu, A. Recent update on antibacterial and antifungal activity of quinoline scaffolds. Arch. Pharm., 2021, 354(3), 2000232.
[http://dx.doi.org/10.1002/ardp.202000232] [PMID: 33210348]
[153]
Yang, R.; Du, W.; Yuan, H.; Qin, T.; He, R.; Ma, Y.; Du, H. Synthesis and biological evaluation of 2-phenyl-4-aminoquinolines as potential antifungal agents. Mol. Divers., 2020, 24(4), 1065-1075.
[http://dx.doi.org/10.1007/s11030-019-10012-1] [PMID: 31705363]
[154]
Mo, J.; Yang, H.; Chen, T.; Li, Q.; Lin, H.; Feng, F.; Liu, W.; Qu, W.; Guo, Q.; Chi, H.; Chen, Y.; Sun, H. Design, synthesis, biological evaluation, and molecular modeling studies of quinoline-ferulic acid hybrids as cholinesterase inhibitors. Bioorg. Chem., 2019, 93, 103310.
[http://dx.doi.org/10.1016/j.bioorg.2019.103310] [PMID: 31586704]
[155]
Rana, M.; Pareek, A.; Bhardwaj, S.; Arya, G.; Nimesh, S.; Arya, H.; Bhatt, T.K.; Yaragorla, S.; Sharma, A.K. Aryldiazoquinoline based multifunctional small molecules for modulating Aβ 42 aggregation and cholinesterase activity related to Alzheimer’s disease. RSC Advances, 2020, 10(48), 28827-28837.
[http://dx.doi.org/10.1039/D0RA05172A] [PMID: 35520091]
[156]
Sedic, M.; Poznic, M.; Gehrig, P.; Scott, M.; Schlapbach, R.; Hranjec, M.; Karminski-Zamola, G.; Pavelic, K.; Pavelic, S.K. Differential antiproliferative mechanisms of novel derivative of benzimidazo[1,2- α]quinoline in colon cancer cells depending on their p53 status. Mol. Cancer Ther., 2008, 7(7), 2121-2132.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-2261] [PMID: 18645022]
[157]
Hu, Y.; Green, N.; Gavrin, L.K.; Janz, K.; Kaila, N.; Li, H.Q.; Thomason, J.R.; Cuozzo, J.W.; Hall, J.P.; Hsu, S.; Nickerson-Nutter, C.; Telliez, J.B.; Lin, L.L.; Tam, S. Inhibition of Tpl2 kinase and TNFα production with quinoline-3-carbonitriles for the treatment of rheumatoid arthritis. Bioorg. Med. Chem. Lett., 2006, 16(23), 6067-6072.
[http://dx.doi.org/10.1016/j.bmcl.2006.08.102] [PMID: 16973359]
[158]
Rajagopal, R.; Waller, A.S.; Mendoza, J.D.; Wightman, P.D. The covalent modification and regulation of TLR8 in HEK-293 cells stimulated with imidazoquinoline agonists. Biochem. J., 2008, 409(1), 275-287.
[http://dx.doi.org/10.1042/BJ20070519] [PMID: 17868034]
[159]
Popescu, L.; Rau, O.; Böttcher, J.; Syha, Y.; Schubert-Zsilavecz, M. Quinoline-based derivatives of pirinixic acid as dual PPAR α/γ agonists. Arch. Pharm., 2007, 340(7), 367-371.
[http://dx.doi.org/10.1002/ardp.200700042] [PMID: 17610302]
[160]
Lauria, A.; La Monica, G.; Bono, A.; Martorana, A. Quinoline anticancer agents active on DNA and DNA-interacting proteins: From classical to emerging therapeutic targets. Eur. J. Med. Chem., 2021, 220, 113555.
[http://dx.doi.org/10.1016/j.ejmech.2021.113555] [PMID: 34052677]
[161]
Björk, P.; Björk, A.; Vogl, T.; Stenström, M.; Liberg, D.; Olsson, A.; Roth, J.; Ivars, F.; Leanderson, T. Identification of human S100A9 as a novel target for the treatment of autoimmune disease via binding to quinoline-3-carboxamides. PLoS bio., 2009, 7(4), e97.
[http://dx.doi.org/10.1371/journal.pbio.1000097]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy